
Bootstrap and Resampling Methods

• Often we have an estimator T of a parameter θ and want to know its
sampling properties

– to informally assess the quality of the estimate

– for formal confidence intervals

– for formal hypothesis tests

• In some cases we can obtain exact results; usually this requires

– particularly convenient statistics (e.g. linear)

– particularly convenient data models (e.g. normal)

• For more complex problems we can use approximations

– based on large samples

– use central limit theorem

– use Taylor series approximations

• Alternative: use simulation in place of central limit theorem and approx-
imations

• References:

– Givens and Hoeting, Chapter 9.

– Davison, A. C. and Hinkley, D. V. (1997) “Bootstrap Methods and
their Application,” Cambridge University Press.

– Package boot; R port of S-Plus code written to support Davison
and Hinkley.
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Example: A Parametric Bootstrap

• Ordered times between failures of air conditioning unit on one aircraft:

3 5 7 18 43 85 91 98 100 130 230 487

• Suppose the data are exponentially distributed with mean µ and we want
to estimate the failure rate θ = 1/µ .

• The MLE of µ is µ̂ = X = 108.0833.

• The MLE of θ is T = 1/X .

• The exact sampling distribution is inverse gamma with mean µ , which
we do not know.

• We could compute the exact bias and variance of T ,

b(µ) = Eµ [T ]−θ = Eµ [T ]−1/µ =
1

n−1
1
µ
=

1
n−1

θ

v(µ) = Varµ(T ) =
1

µ2
n2

(n−1)2(n−2)
= θ

2 n2

(n−1)2(n−2)

and obtain plug-in estimates

B = b(µ̂)
V = v(µ̂)
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• One alternative to exact computation of the sampling distribution is the
delta method.

• The first order delta method approximates T by

T = 1/X ≈ 1/µ− (X−µ)/µ
2

So

b(µ)≈ 0

v(µ)≈ Var(X)/µ
4 =

1
n

µ2

µ4 =
θ 2

n

• A second order delta method for the bias uses

T = 1/X ≈ 1/µ− (X−µ)/µ
2 +(X−µ)2/µ

3

So
b(µ)≈ Var(X)/µ

3 =
θ

n

• Instead of working out b(·) and v(·) analytically, we can estimate B and
V by simulation:

– Draw a sample X∗1 , . . . ,X
∗
12 from an exponential distribution with

mean µ = µ̂ = 108.0833.

– Compute T ∗ from this sample.

– Repeat R times to obtain T ∗1 , . . . ,T
∗

R

– Estimate the bias and variance of T by

B∗ = T ∗−T

V ∗ =
1

R−1

R

∑
i=1

(T ∗i −T ∗)2

• The full sampling distribution can be examined using a histogram or
other density estimate.
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Bootstrap and Resampling Methods

Example: A Nonparametric Bootstrap

• Instead of assuming an exponential population in assessing the perfor-
mance of T we can make the weaker assumption that X1, . . . ,Xn is a ran-
dom sample from an arbitrary distribution F .

• A delta method approximation to the variance is

Var(T )≈ S2
X

nX4

• A non-parametric bootstrap approach takes the empirical distribution F̂
with

F̂(t) =
#{Xi ≤ t}

n
as an approximation to F , and

– draws a sample X∗1 , . . . ,X
∗
12 from F̂ ,

– computes T ∗ from this sample,

– repeats R times to obtain T ∗1 , . . . ,T
∗

R ,

– estimate the bias and variance of T by

B∗ = T ∗−T

V ∗ =
1

R−1

R

∑
i=1

(T ∗i −T ∗)2

• Drawing a random sample from F̂ is the same as sampling with replace-
ment from {X1, . . . ,Xn}
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Some Results

Method Bias Stand. Dev.
Exact 0.000841 0.003192
Param. Delta (1st order) 0.0 0.002671
Param. Delta (2nd order) 0.0007710
Nonparam. Delta (1st order) 0.0 0.003366
Nonparam. Delta (2nd order) 0.001225
Parametric Bootstrap (R = 10000) 0.000857 0.003185
Nonparametric Bootstrap (R = 10000) 0.001244 0.004170
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Notes

• There are two kinds of errors in the bootstrap approaches (Davison and
Hinkley’s terminology):

– The statistical error due to using µ̂ or F̂ instead of µ or F .

– The simulation error.

• The simulation error can be reduced by

– increasing R

– using variance reduction methods if applicable

• The statistical error is reduced as the sample size n gets large.

• In some settings the statistical error can be reduced by working with a
transformed parameter.

• For the parametric bootstrap, as R→ ∞

B∗→ b(µ̂)
V ∗→ v(µ̂)

and

b(µ̂) =
1

n−1
1
µ̂
= b(µ)+OP(n−3/2)

v(µ̂) =
1
µ̂

n2

(n−1)2(n−2)
= v(µ)+OP(n−3/2)
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• Similar results hold, under suitable regularity conditions, for the non-
parametric bootstrap.

• Suppose X1, . . . ,Xn are a random sample from F with mean µF and vari-
ance σ2

F . Let

θF = µ
2
F

T = X2

• The bias of T is

b(F) = EF [T ]−θ(F) = EF [X
2
]−µ

2
F = VarF(X) =

1
n

σ
2
F

• The bootstrap bias (R = ∞) is

b(F̂) =
1
n

σ
2
F̂
=

1
n

n−1
n

S2

• If the population has finite fourth moments, then

b(F̂) = b(F)+OP(n−3/2)

• Except in some special cases the theoretical justification for the bootstrap
is asymptotic in sample size.

• The motivation for the nonparametric bootstrap is often similar to the
motivation for using the sandwich estimator of variance:

– use a model to suggest an estimator T

– do not assume the model in assessing the estimator’s performance
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A Simple Implementation

• The basic operation of bootstrapping is to generate samples and collect
statistics:

b <- function(stat, gen, R)
sapply(1:R, function(i) stat(gen()))

• A generator for an exponential model can be constructed by

makeExpGen <- function(data) {
rate <- 1 / mean(data)
n <- length(data)
function() rexp(n, rate)

}

This uses lexical scope to capture the variables rate and n.

• A parametric bootstrap sample of T is produced by

v <- b(function(data) 1 / mean(data),
makeExpGen(aircondit$hours), 10000)

• A generator for a nonparametric bootstrap sample drawn from the em-
pirical distribution is constructed by

makeEmpGen <- function(data) {
if (is.vector(data)) {

n <- length(data)
function() data[sample(n, n, replace = TRUE)]

}
else {

n <- nrow(data)
function() data[sample(n, n, replace = TRUE), , drop = FALSE]

}
}

– The variables data and n are captured by lexical scope.

– The data can be a vector, a matrix, or a data frame.

• A nonparametric bootstrap sample of T is produced by

vv <- b(function(data) 1 / mean(data),
makeEmpGen(aircondit$hours), 10000)
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A Cautionary Example

• In many elementary bootstrap applications we have, at least approxi-
mately,

T = T (F̂)

θ = T (F)

• For the basic nonparametric bootstrap to work, some level of smoothness
of θ as a function of F is needed.

• Suppose we are interested in examining the sampling distribution of the
median for the air conditioner data.

• Parametric and nonparametric bootstrap samples are produced by

medpb <- b(median, makeExpGen(aircondit$hours),10000)
mednpb <- b(median, makeEmpGen(aircondit$hours),10000)

• The resulting histograms are
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• A more complex smoothed bootstrap can be used to address this issue.

9



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

• Suppose

– vn(T ) = Var(T ) for a sample of size n

– V ∗n is the boostrap estimate for R = ∞ for a sample of size n.

Then, under suitable conditions,

nvn(T )→
1

4 f (θ)2

nV ∗n (T )→
1

4 f (θ)2

In this sense the boostrap is valid.

• The mean square error E[(nV ∗n (T )−nvn(T ))2] tends to zero slower than
for smooth functionals (O(n−1/2) instead of O(n−1)).

• The mean square error for a suitable smooth bootstrap converges faster
than for an unsmoothed one, but not as fast as for smooth functionals
(O(n−4/5) can be achieved).
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Bootstrapping Regression Models

• Suppose we have independent observations (x1,y1), . . . ,(xn,yn).

• Regression models model the conditional distribution y|x.

• Linear regression models assume E[Yi|xi] = xiβ .

• Often we assume Var(Yi|xi) is constant.

• Parametric bootstrapping can be used for a parametric model.

• Two forms of non-parametric bootstrap are used:

– Case-based bootstrapping: pairs (x∗,y∗) are selected with replace-
ment from (x1,y1), . . . ,(xn,yn). This is also called a pairs bootstrap.

– Model-based bootstrapping: Residuals are formed using the model,
and bootstrap samples are constructed by sampling the residuals.
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Case-Based Bootstrap

• Assumes the (Xi,Yi) are sampled from a multivariate population.

• Advantages:

– Simplicity.

– Does not depend on an assumed mean model.

– Does not depend on a constant variance assumption.

– Does not depend on the notion of a residual.

– Similar in spirit to the sandwich estimator.

• Disadvantages:

– Not appropriate for designed experiments.

– Does not reproduce standard results conditional on xi

– For bivariate normal data the bootstrap distribution of β̂1 is estimat-
ing a mixture over the xi of

N(β ,σ2/∑(xi− x)2)

distributions, i.e. a non-central tn−1 distribution.

– Does reproduce standard results for studentized quantities where the
conditional distribution does not depend on the xi.

– Can lead with high probability to design matrices that are not of full
rank.

12
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Model-Based Bootstrap

• This is a semi-parametric approach.

• It assumes

– Yi = µ(xi)+ εi

– the εi have a common distribution G with mean zero

– µ(xi) has a parametric form (usually).

• The raw residuals are of the form ei = yi− µ̂(xi).

• For generalized linear models one can use various definitions of raw
residuals (original scale, linear predictor scale, deviance residuals, e.g.).

• The raw residuals usually do not have constant variance; for linear mod-
els

Var(ei) = σ
2(1−hi)

where hi is the leverage of the i-th case, the i-th diagonal element of the
hat matrix H = X(XT X)−1XT .

• The modified residuals are

ri =
yi− µ̂(xi)

(1−hi)1/2 =
ei

(1−hi)1/2

Approximate leverages are used for generalized linear and nonlinear mod-
els.

• The modified residuals usually do not have mean zero, so need to be
adjusted.

• The model-based resampling algorithm:

– randomly resample ε∗i with replacement from r1− r, . . . ,rn− r.

– set y∗i = µ̂(xi)+ ε∗i

– fit a model to the (xi,y∗i ).
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Example: Leukemia Survival

• For the leukemia survival data of Feigl and Zelen we can fit a model

logTimei = β0 +β1 log(WBCi/10000)+β2AGi + εi

where the εi are assumed to have zero mean and constant variance.

• We can compute the fit and some diagnostics with

library(boot)
fz <-

read.table(
"http://www.stat.uiowa.edu/˜luke/classes/STAT7400/feigzel2.dat",
head = TRUE)

fz.lm <- glm(log(fz$Time) ˜ log(fz$WBC / 10000) + fz$AG)
fz.diag <- glm.diag(fz.lm)

• A case-based bootstrap is computed by

fz.fit <- function(d)
coef(glm(log(d$Time) ˜ log(d$WBC / 10000) + d$AG))

fz.case <- function(data, i)
fz.fit(data[i,])

fz.boot1 <- boot(fz, fz.case, R=499)

• A model-based bootstrap is computed by

fz.res <- residuals(fz.lm) / sqrt(1 - fz.diag$h)
fz.res <- fz.res - mean(fz.res)
fz.df <- data.frame(fz, res = fz.res, fit = fitted(fz.lm))
fz.model <- function(data, i) {

d <- data
d$Time <- exp(d$fit + d$res[i])
fz.fit(d)

}
fz.boot2 <- boot(fz.df, fz.model, R=499)
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A comparison of the bootstrap distributions for β̂2:

plot(density(fz.boot2$t[,3]))
lines(density(fz.boot1$t[,3]),col="blue")
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density(x = fz.boot2$t[, 3])

N = 499   Bandwidth = 0.1097
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∗
2 Stand. Error

Least Squares 0.9883 0.4361
Case-based Bootstrap 1.0187 0.4389
Model-based Bootstrap 0.9686 0.4353
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Bootstrap Confidence Intervals

Simple Intervals

• A simple interval can be based on T − θ being approximately normal
with mean B∗ and variance V ∗:

[θL,θU ] = T −B∗±
√

V ∗z1−α/2

• With the variance stabilizing logarithm transformation this becomes

[θL,θU ] = exp{logT −B∗L±
√

V ∗L z1−α/2}

with B∗L and V ∗L the bootstrap estimates of bias and variance for logT .

• Results for the air conditioner data and α = 0.05:

Parametric Log Scale θL θU
yes no 0.002152 0.01464
no no -0.000165 0.01618
yes yes 0.004954 0.01585
no yes 0.004238 0.01783
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Basic Bootstrap Intervals

• If P(T −θ ≤ a) = α/2 and P(T −θ ≥ b) = α/2 then

P(a≤ T −θ ≤ b) = P(T −b≤ θ ≤ T −a) = 1−α

• We can estimate a, b by T ∗((R+1)α/2)−T and T ∗((R+1)(1−α/2))−T to get the
interval

[θL,θU ] = [T − (T ∗((R+1)(1−α/2))−T ),T − (T ∗((R+1)α/2)−T )]

= [2T −T ∗((R+1)(1−α/2)),2T −T ∗((R+1)α/2)]

• This can be done on a variance stabilizing scale as well; for the loga-
rithm:

[θL,θU ] = [T 2/T ∗((R+1)(1−α/2)),T
2/T ∗((R+1)α/2)]

• Results for the air conditioner data and α = 0.05:

Parametric Log Scale θL θU
yes no 0.0006166 0.01286
no no -0.0026972 0.01325
yes yes 0.0047855 0.01516
no yes 0.0040375 0.01628
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Studentized Bootstrap Intervals

• Suppose we have

– an estimator T of θ

– an estimator U of the variance of T , e.g. from the delta method

• From the bootstrap samples compute

– estimates T ∗1 , . . . ,T
∗

R

– variance estimates U∗1 , . . . ,U
∗
R

• Compute and rank studentized values

Z∗i =
T ∗i −T√

U∗i

• The studentized interval is then

[θL,θU ] = [T −
√

UZ∗((R+1)(1−α/2)),T −
√

UZ∗((R+1)α/2)]

• For the air conditioner data the delta method variance estimate for T is

U =
1
n

S2

X4

For logT the variance estimate is

UL =
1
n

S2

X2

18
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Other Bootstrap Confidence Intervals

• Percentile Methods

– Basic: [T ∗((R+1)α/2),T
∗
((R+1)(1−α/2))]

– Does not work very well with a nonparametric bootstrap

– Modified: BCa method

• ABC method.

• Double bootstrap.

• ...

19
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Bootstrap and Monte Carlo Tests

• Simulation can be used to compute null distributions or p-values.

• If the distribution of the test statistic under H0 has no unknown parame-
ters, then the p-value

P(T ≥ t|H0)

can be computed by simulation with no statistical error.

• If the distribution of the test statistic under H0 does have unknown pa-
rameters but a sufficient statistic S for the model under H0 is available,
then it may be possible to compute the conditional p-value

P(T ≥ t|S = s,H0)

by simulation with no statistical error.

• In other cases, an approximate p-value

P(T ≥ t|F̂0)

is needed.

• Transformations and reparameterizations can help reduce the statistical
error in these cases.
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Parametric Tests: Logistic Regression

• Suppose Y1, . . . ,Yn are independent binary responses with scalar covariate
values x1, . . . ,xn.

• A logistic regression model specifies

log
P(Yi = 1|xi)

P(Yi = 0|xi)
= β0 +β1xi

• Under H0 : β1 = 0, S = ∑Yi is sufficient for β0.

• A natural test statistic for H1 : β1 6= 0 is

T = ∑xiYi

• Conditional on S = s and H0 the distribution of the Yi is uniform on the(n
s

)
possible arrangements of s ones and n− s zeros.

• We can simulate from this distribution by generating random permuta-
tions.

• Another (in this case silly) option is to use MCMC in which each step
switches a random yi,y j pair.
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Parametric Bootstrap Tests: Separate Families

• For the air conditioner data we might consider testing

H0 : data have a Gamma(α,β ) distribution

H1 : data have a Log Normal(µ,σ2) distribution

• A test can be based on

T =
1
n ∑ log

f1(xi|µ̂, σ̂2)

f0(xi|α̂, β̂ )

• A normal approximation for the null distribution of T exists but may be
inaccurate.

• The bootstrap null distribution of T is computed by:

– Generate R random samples from the fitted null model, Gamma(α̂, β̂ ).

– For each sample calculate the MLE’s α̂∗, β̂ ∗, µ̂∗, and σ̂∗2.

– Using these MLE’s compute T ∗ for each sample

• For small samples this sort of test may not be useful:

– For the air conditioner data there is no significant evidence for re-
jecting a Gamma model in favor of a log normal model.

– There is also no significant evidence for rejecting a log normal model
in favor of a Gamma model.

Both p values are quite large.
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Nonparametric Permutation Tests: Correlation

• A test for independence of bivariate data (X1,Y1), . . . ,(Xn,Yn) can be
based on the sample correlation

T = ρ(F̂)

• Under the null hypothesis of independence the two sets of order statistics
are sufficient.

• The conditional null distribution of T , given the order statistics, is the
distribution of

T ∗ = ρ((X(1),Y
∗
1 ), . . .(X(n),Y

∗
n ))

where Y ∗1 , . . . ,Y
∗
n is drawn uniformly from all permutations of Y1, . . . ,Yn.

• The null distribution of T can be simulated by randomly selecting per-
mutations and computing T ∗ values.

• Any other measure of dependence can be used as well, for example a
rank correlation.
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Semi-Parametric Bootstrap Test: Equality of Means

• Suppose we have data

Yi j = µi +σiεi j, j = 1, . . . ,ni; i = 1, . . . ,k

and we assume the εi j are independent from a common distribution G.

• To test H0 : µi = · · ·= µk against a general alternative we can use

T =
k

∑
i=1

wi(Y i− µ̂0)
2

with

µ̂0 = ∑wiY i/∑wi

wi = ni/S2
i

• The null distribution would be approximately χ2
k−1 for large sample sizes.

• The null model studentized residuals are

ei j =
Yi j− µ̂0√

σ̂2
i0− (∑wi)−1

with
σ̂

2
i0 = (ni−1)S2

i /ni +(Y i− µ̂0)
2

• The bootstrap simulates data sets

Y ∗i j = µ̂0 + σ̂i0ε
∗
i j

with the ε∗i j sampled with replacement from the pooled null studentized
residuals.
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Fully Nonparametric Bootstrap Tests: Comparing Two Means

• Suppose Yi j, i = 1,2, j = 1, . . . ,ni, are independent with Yi j ∼ Fi and
means µi.

• We want to test H0 : µ1 = µ2.

• Nonparametric maximum likelihood estimates F1 and F2 by discrete dis-
tributions concentrated on the observed data values.

• A certain nonparametric maximum likelihood argument suggests that the
maximum likelihood probabilities, under the constraint of equal means,
are of the form

p̂1 j,0 =
exp(λy1 j)

∑
n1
k=1 exp(λy1k)

p̂2 j,0 =
exp(−λy2 j)

∑
n2
k=1 exp(−λy2k)

with λ chosen numerically to satisfy

∑y1 j exp(λy1 j)

∑exp(λy1 j)
=

∑y2 j exp(−λy2 j)

∑exp(−λy2 j)

These are called exponential tilts of the empirical distribution.

• The tilted bootstrap two-sample comparison:

– Generate Y ∗1 j, j = 1, . . . ,n1 by sampling from y1 j with weights p̂1 j,0

– Generate Y ∗2 j, j = 2, . . . ,n2 by sampling from y2 j with weights p̂2 j,0

– Compute T ∗ = Y ∗2−Y ∗1
– Repeat R times

Then compute a bootstrap p-value, say

p =
1+#{T ∗i ≥ T}

R+1

• It is a good idea to look at the two tilted distributions to make sure they
are not too silly.
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Graphical Tests

• Bootstrapping and resampling ideas can be used to help calibrate graph-
ical procedures.

• As an example, a plot of X(i)/X against the quantiles of a unit exponential
distribution can be used to asses the appropriateness of the exponential
model for the airconditioner data:
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• The dashed line is the theoretical line for large samples.

• Is the departure more than might be expected by chance for a sample of
this size from an exponential distribution?
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• A bootstrap approach:

– Generate a sample Y ∗1 , . . . ,Y
∗
n from an exponential distribution (the

mean does not matter)
– plot Y ∗(i)/Y ∗ against the unit exponential quantiles − log(1− i/(n+

1))
– Repeat and add to the plot

• For the air conditioner data with R = 50 replications this produces
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• Some references on similar ideas:

– Andreas Buja (1999) Talk given at the Joint Statistics Meetings 1999,
on the possibility of valid inference in exploratory data analysis,
with Di Cook: Inference for Data Visualization

– Andrew Gelman (2004) “Exploratory data analysis for complex mod-
els.” Journal of Computational and Graphical Statistics.

– Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja
(2010) “Graphical inference for infovis.” IEEE Transactions on Vi-
sualization and Computer Graphics
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