
Computer Arithmetic

Computer Arithmetic in Hardware

• Computer hardware supports two kinds of numbers:

– fixed precision integers

– floating point numbers

• Computer integers have a limited range

• Floating point numbers are a finite subset of the (extended) real line.

Overflow

• Calculations with native computer integers can overflow.

• Low level languages usually do not detect this.

• Calculations with floating point numbers can also overflow to ±∞.

Underflow

• Floating point operations can also underflow (be rounded to zero).
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A Simple Example

A simple C program, available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400-2020/examples/fact

that calculates n! using integer and double precision floating point produces

luke@itasca2 notes% ./fact 10
ifac = 3628800, dfac = 3628800.000000
luke@itasca2 notes% ./fact 15
ifac = 2004310016, dfac = 1307674368000.000000
luke@itasca2 notes% ./fact 20
ifac = -2102132736, dfac = 2432902008176640000.000000
luke@itasca2 notes% ./fact 30
ifac = 1409286144, dfac = 265252859812191032188804700045312.000000
luke@itasca2 notes% ./fact 40
ifac = 0, dfac = 815915283247897683795548521301193790359984930816.000000
luke@itasca2 fact% ./fact 200
ifac = 0, dfac = inf

• Most current computers include±∞ among the finite set of representable
real numbers.

• How this is used may vary:

– On our x86 64 Linux workstations:

exp(1000)

## [1] Inf

– On a PA-RISC machine running HP-UX:

exp(1000)
## [1] 1.797693e+308

This is the largest finite floating point value.
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Arithmetic in R

Higher level languages may at least detect integer overflow.

In R,

typeof(1:100)

## [1] "integer"

p <- as.integer(1) # or p <- 1L
for (i in 1:100) p <- p * i

## Warning in p * i: NAs produced by integer overflow

p

## [1] NA

Floating point calculations behave much like the C version:

p <- 1
for (i in 1:100) p <- p * i
p

## [1] 9.332622e+157

p <- 1
for (i in 1:200) p <- p * i
p

## [1] Inf
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The prod function converts its argument to double precision floating point
before computing its result:

prod(1:100)

## [1] 9.332622e+157

prod(1:200)

## [1] Inf

4



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Bignum and Arbitrary Precision Arithmetic

Other high-level languages may provide

• arbitrarily large integers(often called bignums)

• rationals (ratios of arbitrarily large integers)

Some also provide arbitrary precision floating point arithmetic.

In Mathematica:

In[3]:= Factorial[100]

Out[3]= 933262154439441526816992388562667004907159682643816214685929638952175\
> 999932299156089414639761565182862536979208272237582511852109168640000000\
> 00000000000000000

In R we can use the gmp package available from CRAN:

library(gmp)
prod(as.bigz(1:100))
## [1] "933262154439441526816992388562667004907159682643816214685929638952175
## 999932299156089414639761565182862536979208272237582511852109168640000000
## 00000000000000000"

• The output of these examples is slightly edited to make comparison eas-
ier.

• These calculations are much slower than floating point calculations.

• C now supports long double variables, which are often (but not al-
ways!) slower than double but usually provide more accuracy.

• Some FORTRAN compilers also support quadruple precision variables.
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Rounding Errors

A simple, doubly stochastic 2×2 Markov transition matrix:

p <- matrix(c(1/3, 2/3, 2/3,1/3),nrow=2)
p

## [,1] [,2]
## [1,] 0.3333333 0.6666667
## [2,] 0.6666667 0.3333333

Theory says:

Pn→
[

1/2 1/2
1/2 1/2

]
Let’s try it:

q <- p
for (i in 1:10) q <- q %*% q
q

## [,1] [,2]
## [1,] 0.5 0.5
## [2,] 0.5 0.5

The values aren’t exactly equal to 0.5 though:

q - 0.5

## [,1] [,2]
## [1,] -1.776357e-15 -1.776357e-15
## [2,] -1.776357e-15 -1.776357e-15
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We can continue:

for (i in 1:10) q <- q %*% q
q

## [,1] [,2]
## [1,] 0.5 0.5
## [2,] 0.5 0.5

for (i in 1:10) q <- q %*% q
for (i in 1:10) q <- q %*% q
q

## [,1] [,2]
## [1,] 0.4999981 0.4999981
## [2,] 0.4999981 0.4999981

Rounding error has built up.
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Continuing further:

for (i in 1:10) q <- q %*% q
q

## [,1] [,2]
## [1,] 0.4980507 0.4980507
## [2,] 0.4980507 0.4980507

for (i in 1:10) q <- q %*% q
q

## [,1] [,2]
## [1,] 0.009157819 0.009157819
## [2,] 0.009157819 0.009157819

for (i in 1:10) q <- q %*% q
for (i in 1:10) q <- q %*% q
for (i in 1:10) q <- q %*% q
q

## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
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As another example, the log-likelihood for right-censored data includes terms
of the form log(1−F(x)). For the normal distribution, this can be computed
as

log(1 - pnorm(x))

An alternative is

pnorm(x, log = TRUE, lower = FALSE)

The expressions

x <- seq(7,9,len=100)
plot(x, pnorm(x, log = TRUE,lower = FALSE), type = "l")
lines(x, log(1 - pnorm(x)), col = "red")

produce the plot
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Some notes:

• The problem is called catastrophic cancellation.

• Floating point arithmetic is not associative or distributive.

• The range considered here is quite extreme, but can be important in some
cases.

• The expression log(1 - pnorm(x)) produces invalid results (−∞)
for x above roughly 8.3.

• Most R cdf functions allow lower.tail and log.p arguments (short-
ened to log and lower here)

• The functions expm1 and log1p can also be useful.

expm1(x)= ex−1
log1p(x)= log(1+ x)

These functions also exist in the standard C math library.
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Another illustration is provided by the behavior of the expression

e−2x2− e−8x2

near the origin:

x <- seq(-1e-8, 1e-8, len = 101)
plot(x, exp(-2 * x ˆ 2) - exp(-8 * x ˆ 2), type = "l")

Rewriting the expression as

e−2x2
(

1− e−6x2
)
=−e−2x2

expm1(−6x2)

produces a more stable result:

lines(x, -exp(-2 * x ˆ 2) * expm1(-6 * x ˆ 2), col = "red")
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Example: Sample Standard Deviations

x <- 100000000000000 + rep(c(1,2), 5)
x

## [1] 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14
## [10] 1e+14

print(x, digits = 16)

## [1] 100000000000001 100000000000002 100000000000001
## [4] 100000000000002 100000000000001 100000000000002
## [7] 100000000000001 100000000000002 100000000000001
## [10] 100000000000002

n <- length(x)
s <- sqrt((sum(xˆ2) - n * mean(x)ˆ2) / (n - 1))
s

## [1] 0

s == 0

## [1] TRUE

y <- rep(c(1,2), 5)
y

## [1] 1 2 1 2 1 2 1 2 1 2

sqrt((sum(yˆ2) - n * mean(y)ˆ2) / (n - 1))

## [1] 0.5270463

sd(x)

## [1] 0.5270463

sd(y)

## [1] 0.5270463
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• The “computing formula” ∑x2
i −nx2 is not numerically stable.

• A two-pass algorithm that first computes the mean and then computes
∑(xi− x)2 works much better.

• There are also reasonably stable one-pass algorithms.
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Example: Truncated Normal Distribution

• Sometimes it is useful to simulate from a standard normal distribution
conditioned to be at least a, or truncated from below at a.

• The CDF is

F(x|a) = Φ(x)−Φ(a)
1−Φ(a)

for x≥ a.

• The inverse CDF is

F−1(u|a) = Φ
−1(Φ(a)+u(1−Φ(a)))

• This can be computed using

Finv0 <- function(u, a) {
p <- pnorm(a)
qnorm(p + u * (1 - p))

}

• Some plots:

u <- (1:100) / 101
plot(u, Finv0(u, 0), type = "l")
plot(u, Finv0(u, 2), type = "l")
plot(u, Finv0(u, 4), type = "l")
plot(u, Finv0(u, 8), type = "l")

• An improved version:

Finv1 <- function(u, a) {
q <- pnorm(a, lower.tail = FALSE)
qnorm(q * (1 - u), lower.tail = FALSE)

}

lines(u, Finv1(u, 8), col = "red")

• This could be further improved if the tails need to be more accurate.
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Interger Arithmetic

• Integer data types can be signed or unsigned; they have a finite range.

• Almost all computers now use binary place-value for unsigned integers
and two’s complement for signed integers.

• Ranges are

unsigned: 0,1, . . . ,2n−1
signed: −2n−1, . . . ,2n−1−1.

For C int and Fortran integer the value n = 32 is almost universal.

• If the result of +, *, or - is representable, then the operation is exact;
otherwise it overflows.

• The result of / is typically truncated; some combinations can overflow.

• Typically overflow is silent.

• Integer division by zero signals an error; on Linux a SIGFPE (floating
point error signal!) is signaled.
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• It is useful to distinguish between

– data that are semantically integral, like counts;

– data that are stored as integers.

• Semantic integers can be stored as integer or double precision floating
point data

– 32-bit integers need 4 bytes of storage each; the range of possible
values is [−231,231−1].

– Double precision floating point numbers need 8 bytes; the range of
integers that can be represented exactly is [−253,253].

– Arithmetic on integers can be faster that floating point arithmetic but
this is not always true, especially if integer calculations are checked
for overflow.

– Storage type matters most when calling code in low level languages
like C or FORTRAN.

• Storing scaled floating point values as small integers (e.g. single bytes)
can save space.

• As data sets get larger, being able to represent integers larger than 231−1
is becoming important.
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• Detecting integer overflow portably is hard; one possible strategy: use
double precision floating point for calculation and check whether the
result fits.

– This works if integers are 32-bit and double precision is 64-bit IEEE

– These assumptions are almost universally true but should be tested
at compile time.

Other strategies may be faster, in particular for addition, but are harder
to implement.

• You can find out how R detects integer overflow by looking in the file

src/main/arithmetic.c

The R sources are available at

https://svn.r-project.org/R/
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Floating Point Arithmetic

• Floating point numbers are represented by a sign s, a significand or man-
tissa sig, and an exponent exp; the value of the number is

(−1)s× sig×2exp

The significand and the exponent are represented as binary integers.

• Bases other than 2 were used in the past, but virtually all computers now
follow the IEEE standard number 754 (IEEE 754 for short; the corre-
sponding ISO standard is ISO/IEC/IEEE 60559:2011).

• IEEE 754 specifies the number of bits to use:

sign significand exponent total
single precision 1 23 8 32
double precision 1 52 11 64
extended precision 1 64 15 80

• A number is normalized if 1≤ sig < 2. Since this means it looks like

1.something×2exp

we can use all bits of the mantissa for the something and get an extra bit
of precision from the implicit leading one.

• Numbers smaller in magnitude than 1.0×2expmin can be represented with
reduced precision as

0.something×2expmin

These are denormalized numbers.

• Denormalized numbers allow for gradual underflow. IEEE 745 includes
them; many older approaches did not.

• Some GPUs set denormalized numbers to zero.
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For a significand with three bits, expmin = −1, and expmax = 2 the available
nonnegative floating point numbers look like this:

Normalized numbers are blue, denormalized numbers are red.

• Zero is not a normalized number (but all representations include it).

• Without denormalized numbers, the gap between zero and the first pos-
itive number is larger than the gap between the first and second positive
numbers.

There are actually two zeros in this framework: +0 and −0. One way to see
this in R:

zp <- 0 ## this is read as +0
zn <- -1 * 0 ## or zn <- -0; this produces -0
zn == zp

## [1] TRUE

1 / zp

## [1] Inf

1 / zn

## [1] -Inf

This can identify the direction from which underflow occurred.
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• The IEEE 754 representation of floating point numbers looks like

Single precision, exponent bias b = 127

s - e f

Double precision, exponent bias b = 1023

s - e f

• The exponent is represented by a nonnegative integer e from which a
bias b is subtracted.

• The fractional part is a nonnegative integer f .

• The representation includes several special values: ±∞, NaN (Not a
Number) values:

e f Value
Normalized 1≤ e≤ 2b any ±1. f ×2e−b

Denormalized 0 6= 0 ±0. f ×2−b+1

Zero 0 0 ±0
Infinity 2b+1 0 ±∞

NaN 2b+1 6= 0 NaN

• 1.0/0.0 will produce +∞; 0.0/0.0 will produce NaN.

• On some systems a flag needs to be set so 0.0/0.0 does not produce an
error.

• Library functions like exp, log will behave predictably on most systems,
but there are still some where they do not.

• Comparisons like x <= y or x == y should produce FALSE if one of
the operands is NaN; most Windows C compilers violate this.

• Range of exactly representable integers in double precision:

±(253−1)≈±9.0072×1015

• Smallest positive (denormalized) double precision number:

2−b+1×2−52 = 2−1074 ≈ 4.940656×10−324
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Machine Characteristics

Machine Characteristics in R

The variable .Machine contains values for the characteristics of the current
machine:

.Machine

## $double.eps
## [1] 2.220446e-16
##
## $double.neg.eps
## [1] 1.110223e-16
##
## $double.xmin
## [1] 2.225074e-308
##
## $double.xmax
## [1] 1.797693e+308
##
## $double.base
## [1] 2
##
## $double.digits
## [1] 53
##
## $double.rounding
## [1] 5
##
## $double.guard
## [1] 0
##
## $double.ulp.digits
## [1] -52
##
## $double.neg.ulp.digits
## [1] -53
##
## $double.exponent
## [1] 11
##
## $double.min.exp
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## [1] -1022
##
## $double.max.exp
## [1] 1024
##
## $integer.max
## [1] 2147483647
##
## $sizeof.long
## [1] 8
##
## $sizeof.longlong
## [1] 8
##
## $sizeof.longdouble
## [1] 16
##
## $sizeof.pointer
## [1] 8

The help page gives details.
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Machine Epsilon and Machine Unit

Let m be the smallest and M the largest positive finite normalized floating
point numbers.

Let fl(x) be the closest floating point number to x.

Machine Unit

The machine unit is the smallest number u such that

|fl(x)− x| ≤ u |x|

for all x ∈ [m,M]; this implies that for every x ∈ [m,M]

fl(x) = x(1+u)

for some u with |u| ≤ u. For double precision IEEE arithmetic,

u =
1
2

21−53 = 2−53 ≈ 1.110223×10−16

Machine Epsilon

The machine epsilon εm is the smallest number x such that

fl(1+ x) 6= 1

For double precision IEEE arithmetic,

εm = 2−52 = 2.220446×10−16 = 2u

u and εm are very close; they are sometimes used interchangeably.
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Computing Machine Constants

A standard set of routines for computing machine information is provided by

Cody, W. J. (1988) MACHAR: A subroutine to dynamically deter-
mine machine parameters. Transactions on Mathematical Software,
14, 4, 303-311.

Simple code for computing machine epsilon is in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400-2020/examples/macheps

Using R code:

eps <- 2
neweps <- eps / 2
while (1 + neweps != 1) {

eps <- neweps
neweps <- neweps / 2.0

}
eps

## [1] 2.220446e-16

.Machine$double.eps

## [1] 2.220446e-16

eps == .Machine$double.eps

## [1] TRUE
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Analogous C code compiled with

cc -Wall -pedantic -o eps eps.c

produces

luke@itasca2 macheps% ./eps
epsilon = 2.22045e-16

The same C code compiled with optimization (and an older gcc compiler) on
a i386 system

cc -Wall -pedantic -o epsO2 eps.c -O2

produced

luke@itasca2 macheps% ./epsO2
epsilon = 1.0842e-19

Why does this happen?

Here is a hint:

log2(.Machine$double.eps)

## [1] -52

log2(1.0842e-19)

## [1] -63
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Some Notes

• Use equality tests x == y for floating point numbers with caution

• Multiplies can overflow—use logs (log likelihoods)

• Cases where care is needed:

– survival likelihoods

– mixture likelihoods.

• Double precision helps a lot
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Floating Point Equality

• R FAQ 7.31: Why doesn’t R think these numbers are equal?

b <- 1 - 0.8
b

## [1] 0.2

b == 0.2

## [1] FALSE

b - 0.2

## [1] -5.551115e-17

• Answer from FAQ:

The only numbers that can be represented exactly in R’s nu-
meric type are integers and fractions whose denominator is a
power of 2. Other numbers have to be rounded to (typically) 53
binary digits accuracy. As a result, two floating point numbers
will not reliably be equal unless they have been computed by
the same algorithm, and not always even then. For example

a <- sqrt(2)
a * a == 2

## [1] FALSE

a * a - 2

## [1] 4.440892e-16

The function all.equal() compares two objects using a
numeric tolerance of .Machine$double.eps ˆ 0.5. If
you want much greater accuracy than this you will need to con-
sider error propagation carefully.

• The function all.equal() returns either TRUE or a string describing
the failure. To use it in code you would use something like
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if (identical(all.equal(x, y), TRUE)) ...
else ...

but using an explicit tolerance test is probably clearer.

• Bottom line: be VERY CAREFUL about using equality comparisons
with floating point numbers.

Reference

David Goldberg (1991). What Every Computer Scientist Should Know About
Floating-Point Arithmetic, ACM Computing Surveys. Edited version available
on line.
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