
Additive Models

Basics

One approach to flexible modeling with multiple predictors is to use additive
models:

Y = β0 + f1(x1)+ · · ·+ fp(xp)+ ε

where the f j are assumed smooth.

Variations include

• some linear and some smooth terms

Y = β0 +β1x1 + f2(x2)+ ε

• some bivariate smooth terms

Y = f1(x1)+ f23(x2,x3)+ ε

A joint model using basis functions would be of the form

Y = X0β +X1δ1 + · · ·+Xpδp + ε

with penalized objective function

‖Y −X0β −
p

∑
i=1

Xiδi‖2 +
p

∑
i=1

λiδ
T
i Diδ1
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The model can be fit using the mixed model formulation with p independent
variance components.

An alternative is the backfitting algorithm.
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Backfitting Algorithm

For a model

f (x) = β0 +
p

∑
j=1

f j(x j)

with data yi,xi j and smoothers S j

• initialize β̂0 = y

• repeat

f̂ j← S j

[
{yi− β̂0−∑

k 6= j
f̂k(xik)}n

1

]

f̂ j← f̂ j−
1
n

n

∑
i=1

f̂ j(xi j)

until the changes in the f̂ j are below some threshold.

A more complex linear term is handled analogously.

For penalized linear smoothers with fixed smoothing parameters this can be
viewed as solving the equations for the minimizer by a block Gauss-Seidel
algorithm.

Different smoothers can be used on each variable.

Smoothing parameters can be adjusted during each pass or jointly.

• bruto (Hastie and Tibshirani, 1990) uses a variable selection/smoothing
parameter selection pass based on approximate GCV.

• gam from package mgcv uses GCV.

Backfitting may allow larger models to be fit.
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Backfitting can be viewed as one of several ways of fitting penalized/mixed
models.

Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400-2020/examples/additive.Rmd

4

http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/additive.Rmd


Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Example: Ozone Levels

Data set relates ozone levels to pressure gradient, temperature, and height of
inversion.

A gam fit is produced by

library(mgcv)
data(calif.air.poll, package = "SemiPar")
data(calif.air.poll) # data are from SemiPar

## Warning in data(calif.air.poll): data set ’calif.air.poll’
not found

fit <- gam(ozone.level ˜ s(daggett.pressure.gradient)
+ s(inversion.base.height)
+ s(inversion.base.temp),

data = calif.air.poll)

The default plot method produces
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Mixed Additive Models

Mixed additive models can be written as

Y = X0β +ZU +X1δ1 + · · ·+Xpδp + ε

where U is a “traditional” random effects term with

U ∼ N(0,Σ(θ))

for some parameter θ and the terms X1δ1 + · · ·+Xpδp represent smooth addi-
tive terms.

In principle these can be fit with ordinary penalized least squares or mixed
models software.
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Example: Sitka Pines Experiment

An experiment on sitka pines measured size over time for 79 trees grown in
an ozone-rich environment and a control environment. Measurements were
taken at 13 time points.

data(sitka, package = "SemiPar")
library(lattice)
sitka$ozone.char <- ifelse(sitka$ozone, "ozone", "control")
xyplot(log.size ˜ days|ozone.char, groups = id.num, type = "b",

data = sitka)
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The plot suggests a model with

• a smooth term for time

• a mean shift for ozone

• a random intercept for trees

• perhaps also a random slope for trees
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The random intercept model can be fit with spm using (not working at present)

library(SemiPar)
attach(sitka)
fit <- spm(log.size ˜ ozone + f(days),

random= ˜ 1, group = id.num)

and by gamm with

trees <- as.factor(sitka$id.num)
fit <- gamm(log.size ˜ ozone + s(days),

random = list(trees = ˜ 1), data = sitka)

spm cannot fit a more complex random effects structure at this point. Using
gamm we can fit random slope and intercept with

fit <- gamm(log.size ˜ ozone + s(days),
random = list(trees = ˜ 1 + days), data = sitka)

Residuals don’t show any further obvious pattern.
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Autocorrelated errors over time might be worth considering.
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Generalized Additive Models

Standard generalized linear models include

yi ∼ Bernoulli
(

exp{(Xβ )i}
1+ exp{(Xβ )i}

)

and

yi ∼ Poisson(exp{(Xβ )i})

Maximum likelihood estimates can be computed by iteratively reweighted
least squares (IRWLS)

Penalized maximum likelihood estimates maximize

Loglik(y,X0β +Xiδ )−
1
2

λδ
T Dδ

This has a mixed model/Bayesian interpretation.

GLMM (genelarized linear mixed model) software can be used.

The IRWLS algorithm can be merged with backfitting.
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Example: Trade Union Membership

Data relating union membership and various characteristics are available.

A Bernoulli generalized additive model relates the probability of union mem-
bership to the available predictor variables.

One possible model is fit by

data(trade.union, package = "SemiPar")
fit <- gam(union.member ˜ s(wage) + s(years.educ) + s(age)

+ female + race + south,
family=binomial,
subset=wage < 40, # remove high leverage point
data=trade.union)

The estimated smooth terms are
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Some summary information on the smooth terms:

summary(fit)

##
## Family: binomial
## Link function: logit
##
## Formula:
## union.member ˜ s(wage) + s(years.educ) + s(age) + female + race +
## south
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.2434 0.4614 -0.527 0.59785
## female -0.7101 0.2670 -2.660 0.00782 **
## race -0.3939 0.1615 -2.439 0.01472 *
## south -0.5209 0.2950 -1.765 0.07750 .
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(wage) 2.814 3.520 22.420 0.000107 ***
## s(years.educ) 2.951 3.716 6.020 0.205194
## s(age) 1.000 1.000 2.279 0.131181
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.113 Deviance explained = 12.7%
## UBRE = -0.1362 Scale est. = 1 n = 533
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Alternative Penalties

Bases for function spaces are infinite dimensional.

Some form of penalty or regularization is needed.

Penalties often have a useful Bayesian interpretation.

Most common penalties on coefficients δ

• quadratic, ∑δ 2
i or, more generally, δ T Dδ

• absolute value, L1, LASSO: ∑ |δi|

Ridge Regression

Ridge regression uses the L2 penalty λ ∑δ 2
i .

Using a quadratic penalty δ T Dδ with strictly positive definite D is sometimes
called generalized ridge regression.

The minimizer of
min

δ

{‖Y −Xδ‖2 +λδ
T Dδ}

is

δ̂λ = (XT X +λD)−1XTY

which shrinks the OLS estimate towards zero as λ → ∞.

If XT X = D = I then the ridge regression estimate is

δ̂λ =
1

1+λ
δ̂OLS

14
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LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator) or L1-penalized
minimization problem

min
δ

{‖Y −Xδ‖2 +2λ ∑ |δi|}

does not in general have a closed form solution, but if XT X = I then

δ̂i,λ = sign(δ̂i,OLS)(|δ̂i,OLS|−λ )+

The OLS estimates are shifted towards zero and truncated at zero.

The L1 penalty approach has a Bayesian interpretation as a posterior mode for
a Laplace or double exponential prior.

The variable selection property of the L1 penalty is particularly appealing
when the number of regressors is large, possibly larger than the number of
observations.

For least squares regression with the LASSO penalty

• the solution path as λ varies is piece-wise linear

• there are algorithms for computing the entire solution path efficiently

• Common practice is to plot the coefficients β j(λ ) against the shrinkage
factor s = ‖β (λ )‖1/‖β (∞)‖1

R Packages implementing general L1-penalized regression include lars, lasso2,
and glmnet.

A paper, talk slides, and R package present a significance test for coefficients
entering the model.
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Elastic Net

The elastic net penalty is a combination of the LASSO and Ridge penalties:

λ
[
(1−α)∑δ

2
i +2α ∑ |δi|

]
• Ridge regression corresponds to α = 0.

• LASSO corresponds to α = 1.

λ and α can be estimated by cross-validation.

Elastic net was introduced to address some shortcomings of LASSO, including

• inability to select more than n predictors in p > n problems;

• tendency to select only one of correlated predictors.

The glmnet package implements elastic net regression.

Scaling of predictors is important; by default glmnet standardizes before
fitting.

16
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Non-Convex Penalties

The elastic net penalties are convex for all α .

This greatly simplifies the optimization to be solved.

LASSO and other elastic net fits tend to select more variables than needed.

Some non-convex penalties have the theoretical property of consistently esti-
mating the set of covariates with non-zero coefficients under some asymptotic
formulations.

Some also reduce the bias for the non-zero coefficient estimates.

Some examples are

• smoothly clipped absolute deviation (SCAD);

• minimax concave penalty (MCP).

MCP is of the form ∑ρ(δi,λ ,γ) with

ρ(x,λ ,γ) =

{
λ |x|− x2

2γ
if |x| ≤ γλ

1
2γλ 2 otherwise

for γ > 1.

This behaves like λ |x| for small |x| and smoothly transitions to a constant for
large |x|. SCAD is similar in shape.

Jian Huang and Patrick Breheny have worked extensively on these.

17
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Alternative Bases

Many other bases are used, including

• polynomials

• trigonometric polynomials (Fourier basis)

• wavelet bases

Different bases are more suitable for modeling different functions

General idea: choose a basis in which the target can be approximated well
with a small number of basis elements.

18
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Wavelets

Wavelet smoothing often assumes observations at N = 2J equally spaced points
and uses an orthonormal basis of N vectors organized in J levels.
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A common approach for wavelet smoothing is to use L1 shrinkage with

λ = σ̂
√

2logN

A variant is to use different levels of smoothing at each level of detail.

σ̂ is usually estimated by assuming the highest frequency lavel is pure noise.

Several R packages are available for wavelet modeling, including waveslim,
rwt, wavethresh, and wavelets

Matlab has very good wavelet toolboxes.

S-Plus also has a good wavelet library.
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Other Approaches

MARS, multiple adaptive regression splines. Available in the mda package.

polymars in package polyspline.

Smoothing spline ANOVA.

Projection pursuit regression.

Single and multiple index models.

Neural networks.

Tree models.
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