
Statistics STAT:7400, Spring 2020 Tierney

Assignment 4

1. The Longley data, available as the variable longley in the package datasets,
provides a well-known example for a highly collinear regression, in particular in
the regression of the Employed variable on the other six variables plus an inter-
cept. Using this data set as an illustration, this problem explores the accuracy
of the QR and Cholesky factorization approaches for fitting a regression.

(a) Write an R function that uses the package gmp to compute the exact coeffi-
cients, rounded to the nearest double precision numbers, of a least squares
fit of a vector y to the columns of a matrix X. You may find the func-
tions as.bigq, solve, and as.double useful. Your function should allow
the arguments to be either floating point or arbitrary precision rational
numbers.

(b) Write an R function that uses the Cholesky factorization of the cross prod-
uct matrix to compute the coefficients of a least squares fit of a vector y to
the columns of a matrix X. Your function should take an optional argu-
ment center with default FALSE; if center is TRUE then X should contain
only non-constant columns and you should mean center the columns be-
fore forming the Cholesky factorization (the functions sweep and apply or
colMeans may be useful). When centering is used the model includes an
intercept, which should be estimated and included in the result.

(c) Use these functions and the function lm.fit, which uses QR factoriza-
tion, to compare the accuracy of coefficient estimates obtained by the QR
and Cholesky approaches for the Longley data. Does it help to apply the
Cholesky factorization to mean-centered data? For obtaining the exact
coefficients, keep in mind that the longley data set is a floating point
approximation to the actual decimal data. Looking at the printed repre-
sentation should show you how to convert this approximation to the exact
values as rationals.

2. A random vector Y has a multivariate normal distribution with mean zero and
covariance matrix

C =



1 a 0 0 0 . . . 0 0 0
a 1 a 0 0 . . . 0 0 0
0 a 1 a 0 . . . 0 0 0
0 0 a 1 a . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . a 0 0
0 0 0 0 0 . . . 1 a 0
0 0 0 0 0 . . . a 1 a
0 0 0 0 0 . . . 0 a 1


1

Statistics STAT:7400, Spring 2020 Tierney

The log-likelihood for an observed vector y, dropping additive constants, is

−1

2
log detC − 1

2
yTC−1y

(a) Write an R function to compute the log likelihood for a vector y and a
scalar a using dense matrix methods. The functions chol and backsolve

may be useful. You may also find it useful to use matrix indexing ; for
example for a square matrix M the expression

M[cbind(2 : nrow(M), 1 : (nrow(M) - 1))]

extracts the sub-diagonal of M.

(b) Rewrite your function to use sparse matrix methods provided by the Matrix
package to take advantage of the sparseness of the covariance matrix. The
functions bandSparse, solve, and chol may be useful.

(c) Compare the performance of your two functions on data vectors of differ-
ent lengths. The system.time function may be useful. You should see
significantly better performance of the sparse matrix approach for a large
matrix.

Your submission should include a pdf file with your writeup and text files with .R

extensions with your code for each problem.

You should submit your assignment electronically using Icon. Submit your work as
a single compressed tar file. If your work is in a directory mywork then you can create
a compressed tar file with the command

tar czf mywork.tar.gz mywork

2

http://icon.uiowa.edu

Statistics STAT:7400, Spring 2020 Tierney

Solutions and Comments

1. (a) Here is a simple function for computing the exact regression coefficients
that assumes X is a matrix and y a vector:

exact.fit <- function(X, y) {

bY <- as.bigq(y)

bX <- as.bigq(X)

bXt <- t(bX)

as.double(solve(bXt %*% bX, bXt %*% bY))

}

(b) A function to compute the regression coefficients by Cholesky factorization,
with optional mean centering, is

chol.fit <- function(X, y, center = FALSE) {

if (center) {

cm <- colMeans(X)

Xm <- sweep(X, 2, cm)

beta <- chol.fit(Xm, y - mean(y))

c(mean(y) - crossprod(cm, beta), beta)

}

else {

R <- chol(t(X) %*% X)

z <- t(X) %*% as.vector(y)

as.vector(backsolve(R, forwardsolve(t(R), z)))

}

}

• This uses forwardsolve and backsolve to solve the equations. Using
solve is less efficient and less accurate.

(c) • Looking at the printed version of the longley data frame suggests
that the original data were specified in decimal form with at most
three digits after the decimal point.

• Many decimal fractions are not exactly representable as binary frac-
tions, so the floating point values in the data frame longley are not
exactly equal to the values from the original paper.

• The expressions

> X <- cbind(1, as.matrix(longley[, -7]))

> y <- longley[,7]

> XE <- as.bigq(round(1000 * X)) / as.bigq(1000)

> yE <- as.bigq(round(1000 * y)) / as.bigq(1000)

produce in the variables XE and yE exact rational representations of
the exact decimal data.

3

Statistics STAT:7400, Spring 2020 Tierney

• The relative differences between the coefficients for the exact fit to the
binary values in the longley frame and the fit to these data reflect
the effect of decimal to binary rounding in the binary data:
> (exact.fit(XE, yE) - exact.fit(X, y)) / exact.fit(XE, yE)

[1] -7.835386e-16 -2.833260e-14 -8.911123e-15 -8.586763e-16 4.029450e-15

[6] 6.354484e-14 -6.069607e-16

• Printed versions of the coefficients, using the default settings of the
number of digits to print, are almost the same:
> exact.fit(XE,yE)

[1] -3.482259e+03 1.506187e-02 -3.581918e-02 -2.020230e-02 -1.033227e-02

[6] -5.110411e-02 1.829151e+00

> chol.fit(X,y)

[1] -3.482259e+03 1.506187e-02 -3.581918e-02 -2.020230e-02 -1.033227e-02

[6] -5.110411e-02 1.829151e+00

This is not surprising since computations are done in double precision.
To see the differences you need to compute errors or relative errors:
> exact <- exact.fit(XE, yE)

> (chol.fit(X,y) - exact) / exact

[1] -1.022182e-08 -2.124171e-08 -2.732136e-08 -7.397719e-09 -4.537949e-09

[6] 4.874051e-08 -9.988415e-09

> (as.vector(lm.fit(X,y)$coef) - exact) / exact

[1] -1.697667e-15 -3.984991e-14 -2.712081e-15 -8.586763e-16 -3.357875e-15

[6] -2.783481e-14 -1.699490e-15

The errors for lm.fit are very close in magnitude to the machine unit.
The errors for the Cholesky approach are substantially larger.
Mean centering improves the Cholesky result but they remain worse
than the results obtained using the QR approach.
> (chol.fit(X[, -1], y, TRUE) - exact) / exact

[1] -1.120460e-13 -9.147053e-13 -3.843406e-13 -1.009803e-13 -5.490126e-14

[6] 1.166482e-12 -1.086460e-13

• The approaches using Cholesky factorization are less accurate because
of the loss in accuracy in forming the cross product matrix. Mean
centering improves this, but some accuracy is still lost.

2. A function to create the dense covariance matrix is

mkC0 <- function(n, a) {

m <- diag(rep(1, n))

m[cbind(2 : n, 1 : (n - 1))] <- a

m[cbind(1 : (n - 1), 2 : n)] <- a

m

}

A simple implementation of the log likelihood function that closely follows the
mathematical definition is

4

Statistics STAT:7400, Spring 2020 Tierney

llik0 <- function(y, a) {

C <- mkC0(length(y), a)

-0.5 * log(det(C)) - 0.5 * t(y) %*% solve(C) %*% y

}

This has several issues:

• It is almost always a bad idea to compute an inverse; it is more work
than needed if you only want to solve one system of equations, and it will
decrease numerical accuracy. It is usually better to compute and use an
appropriate decomposition.

• It is almost always a bad idea to compute a determinant and then take its
logarithm.

• If a matrix decomposition is already available then this can be used to
compute the log determinant efficiently and accurately.

• This function returns a 1× 1 matrix rather than a simple vector of length
1.

The most natural decomposition to use for covariance matrices is the Cholesky
decomposition. R functions for computing the Cholesky decomposition of a
matrix C produce an upper triangular matrix R such that C = RTR. In terms
of this R the quadratic form in the log likelihood is

yTC−1y = yT (RTR)−1y = yTR−1R−Ty = zT z

where z = R−Ty, or z solves RT z = y. Furthermore, 1
2

log(det(C)) is equal
to the sum of the logarithms of the diagonal elements of R. This leads to the
definition

llikD <- function(y, a) {

C <- mkC0(length(y), a)

R <- chol(C)

z <- forwardsolve(t(R), y)

- sum(log(diag(R))) -0.5 * sum(z ^ 2)

}

A small improvement is to use the optional arguments to forwardsolve to
avoid the transpose:

llikD <- function(y, a) {

C <- mkC0(length(y), a)

R <- chol(C)

z <- forwardsolve(R, y, upper.tri = TRUE, transpose = TRUE)

- sum(log(diag(R))) -0.5 * sum(z ^ 2)

}

5

Statistics STAT:7400, Spring 2020 Tierney

Using the Matrix package a sparse representation of the covariance matrix can
created by

library(Matrix)

mkC <- function(n, a) {

d0 <- rep(1, n)

d1 <- rep(a, n - 1)

bandSparse(n, k = 0 : 1, diag = list(d0, d1), symm = TRUE)

}

The Cholesky factorization of the sparse covariance matrix is also sparse, and
the sparse matrix method for the solve generic function will take advantage
of this and compute the solution z to RT z = y efficiently. This leads to the
definition

llikS <- function(y, a) {

C <- mkC(length(y), a)

R <- chol(C)

z <- solve(t(R), y)

- sum(log(diag(R))) -0.5 * sum(z ^ 2)

}

I do not see an obvious way to avoid the transpose.

The overhead associated with the sparse matrix support in the Matrix package
is significant; as a result the dense matrix approach is faster for data vectors
with less than about 150 observations. But the computational complexity of the
dense matrix approach is O(n3) whereas the sparse matrix approach is O(n);
so the sparse matrix approach is much faster for larger vectors, and also uses
much less memory.

Some notes:

• sum(x ^ 2) is simpler than t(x) %*% x and produces a scalar rather than
a 1 × 1 matrix.

• It is best to separate installing packages from scripts that might be run
many times.

• You should properly present the timing results with supporting tables and
graphs and explanatory text.

• system.time is not very accurate for computations taking less than a
second.

– You can replicate the computations in a loop to get more accurate
results.

6

Statistics STAT:7400, Spring 2020 Tierney

– The microbenchmark package provides a more sophisticated structure
for timing experiments.

• Make sure your functions take the arguments requested in the problem.

• Make sure you provide your code in a text file with a .R extension.

• Don’t create a dense matrix and the convert to a sparse one — that takes
O(n2) time and space. Use bandSparse to create the sparse matrix directly,
which is O(n) is time and space.

• Once you have the Cholesky factorization you do not need the inverse.

• Once you have the Cholesky factorization you can compute the log deter-
minant you need as the sum of the logarithms of the diagonals. Do not
compute the product of the diagonals and then the logarithm!

• You do not want to compute the inverse of the sparse matrix or its Cholesky
factor: they are not sparse!

• Using forwardsolve with a sparse matrix silently converts the sparse ma-
trix to a dense matrix.

• Speed of likelihood calculations is important since they are needed many
times in iterative computations of maximum likelihood estimates.

• Space efficiency is also important if you want to be able to handle large
data sets.

• No matter how fast or space-efficient your function is, it is of no use if it
gets the wrong answer!

7

http://cran.r-project.org/web/packages/microbenchmark/index.html

