
Statistics STAT:7400, Spring 2020 Tierney

Assignment 2

1. Redo Problem 2 from Assignment 1. Improve your definition of the dpareto

function for computing the Pareto density; in particular make sure that the func-
tion is properly vectorized, handles the range restriction and invalid parameter
values properly, and that the optional log argument is supported. Also make
sure that your graphs properly show the discontinuity of the densities.

2. Several mechanisms are available for calling C code from R. The simplest is the
.C interface. Modify your C function for computing the Pareto density so it
can be used with the .C interface, and include some examples of its use in your
writeup.

The Writing R Extensions manual provides documentation for the .C interface
as well as other interfaces. A simple example is provided on the class web site
that you may find helpful. The files in this example show how to use the .C

interface as well as the richer .Call interface.

Your submission should include the new C source file and a source file with the
R code for calling your C function. Track your work using Git and include your
Git log in your submission.

Be sure to follow the coding standards. Tools are available to help:

• For C code, the indent program on Linux/Mac systems; these have different
control options on Linux and Mac.

• For R code, the formatR package, in particular the tidy source function in
that package.

You should submit your assignment electronically using Icon. Your submission should
include

• your writeup as a PDF file

• files with your R code for Problem 1 and Problem 2

• a file with your C code for Problem 2

• the Git log for your work

Submit your work as a single compressed tar file. If your work is in a directory mywork

then you can create a compressed tar file with the command

tar czf mywork.tar.gz mywork

1

http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html#Interface-functions-_002eC-and-_002eFortran
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/AddOneSimple/
http://cran.r-project.org/doc/manuals/R-exts.html#Interface-functions-_002eCall-and-_002eExternal
http://icon.uiowa.edu


Statistics STAT:7400, Spring 2020 Tierney

Solutions and Comments

General comments:

• Don’t include things not asked for (editor temporary files like foo , .git sub-
directories, executables, shared libraries, etc).

• Avoid excessively large margins.

1. • Please follow the coding standards on use of spaces and indentation and
avoiding long lines.

• Calls to return() are only needed for early exit. Do not use them other-
wise.

• Make sure your log = TRUE code works correctly.

• Use brief but informative error messages.

• You should not use loops if vectorized operations can be used.

• It is usually numerically better to compute the log density and exponenti-
ate than the other way around.

• One possible definition:

dpareto <- function(x, a, b, log = FALSE) {

nx <- length(x)

na <- length(a)

nb <- length(b)

n <- max(nx, na, nb)

if (nx < n) x <- rep(x, length.out = n)

if (na < n) a <- rep(a, length.out = n)

if (nb < n) b <- rep(b, length.out = n)

ld <- ifelse(a > 0 & b > 0,

ifelse(x > a,

log(b) + b * log(a) - (b + 1) * log(x),

log(0)),

NaN)

if (log) ld

else exp(ld)

}

This could be simpler if the ifelse function did not base its result size
entirely on the first argument.

• These are the tests I used:

stopifnot(is.nan(dpareto(3,-2, 1))) # bad parameter

stopifnot(is.nan(dpareto(3,2, -1))) # bar parameter

2



Statistics STAT:7400, Spring 2020 Tierney

stopifnot(all.equal(dpareto(3,2,1), 0.2222222222))

stopifnot(all.equal(dpareto(1,2,3), 0.0))

stopifnot(all.equal(dpareto(3:5,2, 1), c(0.2222222222, 0.1250000, 0.0800000)))

stopifnot(all.equal(dpareto(1:5,2, 1), c(0.0, 0.0, 0.2222222222, 0.1250000, 0.0800000)))

stopifnot(all.equal(dpareto(6,2:4, 1), c(0.05555555556, 0.08333333333, 0.11111111111)))

stopifnot(all.equal(log(dpareto(1:5,2, 1)), dpareto(1:5,2, 1, log = TRUE)))

stopifnot(all.equal(dpareto(1:6,1:2, 1),

c(0.0, 0.0, 0.11111111111, 0.125, 0.04, 0.05555555556)))

stopifnot(all.equal(dpareto(1, 2, 1:2), c(0, 0)))

2. • Your C code should compile without errors or warnings. You can use
the PKG CFLAGS environment variable to set C compiler flags to enable all
warnings; e.g. with

env PKG_CFLAGS="-Wall -pedantic" R CMD SHLIB ...

• It is not a good idea to allocate vectors that might be large as local vari-
ables. These will be allocated on the process stack and the space available
for the stack is not very large.

• Follow the coding guide on use of spaces, indentation, and long lines.

• Standard convention in R density functions is to return NaN for bad pa-
rameter values.

• Do not use printf or REprintf for error messages; use the C level warn-
ing/error calls. Do not terminate the process when there is an error.

• Do not use a loop in R if you are using C for speed.

• It is usually numerically better to compute the log density and exponenti-
ate than the other way around.

• In C code you should only warn about bad parameter values once, not on
every loop iteration.

• I used the same test code as in the first problem.

3


