
Statistics STAT:7400, Spring 2020 Tierney

Assignment 10

1. One of the characteristics of leukemia is an excess of white blood cells. The
white blood cell count at diagnosis can be used to aid in predicting a patient’s
survival time after diagnosis, with high white blood cell counts indicating a
low expected survival time. Feigl and Zelen (Biometrics, 1965) show survival
times in weeks and white blood cell counts (WBC) at diagnosis for 33 patients
who died of acute leukemia. The patients were classified as AG positive or AG
negative depending on the presence or absence of certain characteristics in the
white blood cells. In this problem consider the data for the 17 patients classified
as AG positive. The data set is also available online or the full data is available
as leuk in the MASS package.

Feigl and Zelen model the conditional distribution of the lifetimes given the
white blood cell count as exponentially distributed with mean

θ1 exp(−θ2xi),

where
xi = log(WBCi/10000)

The maximum likelihood estimates for this model are θ̂1 = 56.85 and θ̂2 = 0.482.

Consider a proper but vague prior distribution with θ1 and θ2 independent a
priori and

1/θ1 ∼ Exponential with mean 1000

θ2 ∼ Uniform on [0, 1000].

(a) Verify the maximum likelihood estimates graphically by plotting the log
likelihood function and numerically using a nonlinear optimizer such as
optim in R.

(b) Compute the unnormalized marginal posterior density of θ2 by analytically
integrating out θ1 and plot the resulting unnormalized density.

(c) Use either the rejection sampling or the ratio-of-uniforms approach to con-
struct a method to sample from the marginal posterior density of θ2. Use
graphical, numerical, or analytical methods to choose a reasonable bound
for rejection sampling or the shift µ and to choose bounding rectangle for
ration-of-uniforms sampling. Generate a sample of size 10000 and graph-
ically compare a density estimate for your sample to the analytic form of
the unnormalized density.

(d) Augment your sample of θ2 values to a sample of θ1, θ2 pairs by drawing
θ1 values from the appropriate conditional distribution.
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(e) Use your sample to construct estimates of the posterior means and vari-
ances of θ1 and θ2, the posterior covariance of θ1 and θ2, and the marginal
posterior density of θ1. Obtain standard errors for your moment estimates
and provide a plot of the approximate marginal posterior density of θ1.
Use any variance reduction methods that seem appropriate.

You should submit your assignment electronically using Icon. Submit your work as
a single compressed tar file. If your work is in a directory mywork then you can create
a compressed tar file with the command

tar czf mywork.tar.gz mywork
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Solutions and Comments

1. The likelihood for the model is

L(θ1, θ2) =
exp{θ2

∑
xi}

θn1
exp{−

∑
ti exp{θ2xi}/θ1}

(a) A contour plot of the log likelihood can be used to graphically confirm the
MLE values by successively reducing the axis ranges.

(b) Let ψ1 = 1/θ1. Then the posterior density of f(ψ1, θ2) is proportional to

f(ψ1, θ2|ti) ∝ ψn
1 exp{θ2

∑
xi} exp{−

∑
tiψ1 exp{θ2xi} − ψ1/1000}

As a function of ψ1 this has the form of a Gamma density, and the unnor-
malized marginal posterior density of θ2 is therefore

f(θ2|ti) ∝
exp{θ2

∑
xi}

[
∑
ti exp{θ2xi}+ 1/1000]n+1

for 0 < θ2 < 1000. The data can be read in and a plot of the unnormalized
density constructed using

fz <- read.table("feigzel.dat", head = T)

x <- log(fz[, 1] / 10000)

y <- fz[, 2]

lf2 <- function(t2)

ifelse(0 < t2 & t2 < 1000,

t2 * sum(x) - (length(x) + 1) * log(sum(y * exp(t2 * x)) + 1 / 1000),

-Inf)

plot(function(x) exp(sapply(x, lf2)), 0, 1)

(c) Inspection of the plot shows that the mode is roughly at 0.45. A plot of
the ratio of uniforms region is obtained by

mu <- .45

lf2m <- lf2(mu)

tt <- seq(-4, 4, len = 1000)

u <- exp((sapply(tt + mu, lf2) - lf2m)/ 2)

v <- tt * u

plot(v, u, type = "l")

polygon(v, u, col = "grey")

Computing the density on the log scale and subtracting the log density
value at the approximate mode µ should help with numerical stability.

Inflating the minimum and maximum of the discretized boundary values
by 2% produces a rectangle that encloses the region:
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vmax <- max(v) * 1.02

vmin <- min(v) * 1.02

umax <- max(u) * 1.02

rect(vmin,0,vmax,umax)

The ratio of uniforms sample is constructed by rejection sampling from
this rectangle.

ru <- function(n = 10000) {

x <- double(n)

for (i in 1:n) {

repeat {

u <- runif(1, 0, umax)

v <- runif(1, vmin, vmax)

if (u <= exp((lf2(v / u + mu) - lf2m) / 2)) break

}

x[i] <- v / u

}

x + mu

}

t2 <- ru(10000)

For the graphical comparison we need to scale the plots appropriately;
scaling both to have maximum at or near one is simplest:

d <- density(t2)

plot(d$x, d$y/ max(d$y), type = "l")

lines(tt + mu, exp((sapply(tt + mu, lf2) - lf2m)), col = "red")

(d) The conditional distribution ψ1|θ2 is Gamma with exponent n+1 and rate∑
ti exp{θ2xi + 1/1000}. A sample of θ1 = 1/ψ1 values is generated by

t1 <- 1/rgamma(length(t2), length(x) + 1,

rate = sapply(t2, function(t) sum(y * exp(t * x)) + 1 / 1000))

(e) The estimated posterior means, variances, and covariance are computed
by

mean(t1)

mean(t2)

var(cbind(t1,t2))

The mean of θ1 could be estimated more accurately using Rao-Blackwellization
based on its inverse Gamma full conditional distribution.

Standard errors for the means are given by

sd(t1) / sqrt(length(t1))

sd(t2) / sqrt(length(t2))

and asymptotic standard errors for the variances and covariance by
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sd((t1 - mean(t1))^2) / sqrt(length(t1))

sd((t2 - mean(t2))^2) / sqrt(length(t2))

sd((t1 - mean(t1)) * (t2 - mean(t2))) / sqrt(length(t1))

Marginal density estimates for θ1 can be computed more accurately using
Rao-Blackwellization.
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