More snow Examples

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

September 27, 2007
Several R packages provide spatial prediction (kriging).
Sgeostat has a pure R version, \texttt{krige}.
Computation is a simple loop over points.
Fairly slow when using only points within \texttt{maxdist}.
Result structure is fairly simple.
Easy to write a parallel version.

\texttt{parKrige <- function(cl, s, \ldots) \{
 # split the prediction points \texttt{s}
 idx <- \texttt{clusterSplit(cl, 1:dim(s)[1])}
 ssplt <- \texttt{lapply(idx, function(i) s[i,])}

 # compute the predictions in parallel
 v <- \texttt{clusterApply(cl, ssplt, krige, \ldots)}

 # assemble and return the results
 merge <- function(x, f) do.call("c", \texttt{lapply(x, f)})
 s.o <- \texttt{point(s)}
 s.o$do <- merge(v, function(y) y$do)
 s.o$zhat <- merge(v, function(y) y$zhat)
 s.o$sigma2hat <- merge(v, function(y) y$sigma2hat)
 return(s.o)
\}}
• Measurements at 155 points.
• Predict on $50m \times 50m$ grid.
• Use only data within 1 kilometer.
• Sequential version takes 2.53 seconds.
• Parallel version (10 nodes) takes 0.38 seconds.
• Only a factor of 6.7 speedup.
Load Balanced Kriging

- **clusterApplyLB**: load balanced `clusterApply`.
- Give more jobs n than cluster nodes p.
 - Places first p jobs on p nodes,
 - job $p + 1$ goes to first node to finish,
 - job $p + 2$ goes to second node to finish,
 - etc., until all n jobs are done.
parKrigeLB <- function(cl, s, ..., LBF = 4) {
 # split the prediction points s
 idx <- splitIndices(dim(s)[1], length(cl) * LBF) #****
 ssplt <- lapply(idx, function(i) s[i,])

 # compute the predictions in parallel
 v <- clusterApplyLB(cl, ssplt, krige, ...) #****

 # assemble and return the results
 merge <- function(x, f) do.call("c", lapply(x, f))
 s.o <- point(s)
 s.o$do <- merge(v, function(y) y$do)
 s.o$zhat <- merge(v, function(y) y$zhat)
 s.o$sigma2hat <- merge(v, function(y) y$sigma2hat)
 return(s.o)
}
The result is a speedup of 8.5:

```r
> system.time(pklb <- 
+   parKrigeLB(cl, grid$point, maas.point, 'zinc', maas.vmod, 
+              maxdist=1000, extrap=FALSE, border=maas.bank))

   user  system elapsed
  0.108   0.007   0.297
```

And the results are identical to the sequential version.

```r
> identical(k, pk)
[1] TRUE
> identical(pklb, pk)
[1] TRUE
```

Load balancing can improve performance.

Load balancing does increase communication somewhat.

Load balancing is hard to combine with reproducible simulation.

Load balancing can be hard to use with distributed data.
Parallel Cross Validation

- Useful for choosing tuning parameters.
- Common structure:
 - Outer loop over tuning parameters
 - Inner loop over omitted data
 - Additional inner replication loop if random (nnet)
- Good initial approach:
 - parallelize loop over omitted data
 - replace loop by `lapply`; test and debug
 - replace `lapply` by `parLapply`
Parallel Cross Validation

Nested loops

```r
cv <- function(parameters, data)
  for (p in parameters) {
    v <- vector("list", length(data))
    for (d in data)
      v[[d]] <- fit for p, omitting d
    summarize result for p
  }
```

lapply in inner loop

```r
lcv <- function(parameters, data)
  for (p in parameters) {
    fit <- function(p, d)
      fit for p, omitting d
    v <- lapply(data, fit)
    summarize result for p
  }
```

Parallel version

```r
parCv <- function(cl, parameters, data)
  for (p in parameters) {
    fit <- function(p, d)
      fit for p, omitting d
    v <- parLapply(cl, data, fit)
    summarize result for p
  }
```
Observe y_{ij}, a binary image with noise.

True image is x_{ij}.

Simple noise model:
- $y_{ij}|x \sim p^{y_{ij}=x_{ij}}(1 - p)^{y_{ij} \neq x_{ij}}$
- Pixel noise is independent

A simple image prior distribution:

$$p(x) \propto \exp\{\beta N(x)\}$$

with $N(x)$ the number of neighbor pairs that are the same color.

This is the Ising model.

Simplest approach uses 4 neighbors.

Dependence increases with β.
Simple Image Reconstruction

- Full conditionals are simple:

\[p(x_{ij} = c | y, \{x \setminus x_{ij}\}) = \exp\{\beta \times \text{number of neighbors with color } c\} \]

- Gibbs sampling is easy but can be slow in R using loops.
- Can vectorize using checkerboard order:

Given the red pixels, the white pixels are independent.

This also allows parallel computation.
A Vectorized Algorithm

Computing the number of neighbors with a specified color:

```r
nn <- function(m, c) {
  nr <- nrow(m)
  nc <- ncol(m)
  nn <- matrix(0, nr, nc)
  nn[1:(nr)-1,] <- nn[1:(nr)-1,] + (m[2:nr,] == c)
  nn[2:nr,] <- nn[2:nr,] + (m[1:(nr-1),] == c)
  nn[,1:(nc)-1] <- nn[,1:(nc)-1] + (m[,2:nc] == c)
  nn[,2:nc] <- nn[,2:nc] + (m[,1:(nc-1)] == c)
  nn
}
```

Simulating new pixel values:

```r
simGroup <- function(m, l2, l1, beta, which) {
  pp2 <- l2 * exp(beta * nn(m, 2))
  pp1 <- l1 * exp(beta * nn(m, 1))
  pp <- pp2 / (pp2 + pp1)
  m[which] <- ifelse(runif(sum(which)) < pp[which], 2, 1)
  m
}
```
A Vectorized Algorithm

Computing the likelihood:

```r
makeLik <- function(img, p)
  list(ifelse(img == 1, p, 1 - p), ifelse(img == 2, p, 1 - p))
```

Estimating the posterior mean image:

```r
simImgPM <- function(img, beta, p, NN = 50, K = 50) {
  lik <- makeLik(img, p)
  white <- outer(1:nrow(img), 1:ncol(img), FUN='+') %% 2 == 1
  black <- ! white
  m <- img
  mm <- 0
  for (N in 0 : (NN - 1)) {
    for (i in 1 : K) {
      m <- simGroup(m, lik[[2]], lik[[1]], beta, white)
      m <- simGroup(m, lik[[2]], lik[[1]], beta, black)
    }
    mm <- (N / (N + 1)) * mm + (1 / (N + 1)) * m
  }
  mm
}
```
A Vectorized Algorithm

Some results for $NN = 500$, $K = 1$, and $p = 0.7$:

$\beta = 0.7$

$\beta = 0.9$

Timing:

```r
> system.time(pm <- simImgPM(img4, 0.9, 0.7, 500, 1))
user  system elapsed
42.914 0.468  43.418
```
Towards a Simple Parallel Version

- Split image into two groups of columns.
- Each one needs edge of the other group.
- Find split point and label likelihood values:

 \[
 n_2 \leftarrow \text{floor}(\text{ncol}(img) / 2)
 \]

 \[
 i_1 \leftarrow 1 : n_2; \quad i_{1x} \leftarrow c(i_1, n_2 + 1)
 \]

 \[
 i_2 \leftarrow (n_2 + 1) : \text{ncol}(img); \quad i_{2x} \leftarrow c(n_2, i_2)
 \]

 \[
 l_1 \leftarrow \text{lik}[[1]]
 \]

 \[
 l_2 \leftarrow \text{lik}[[2]]
 \]

- Simulate “white” pattern in two steps

 \[
 m[,i_1] \leftarrow \text{simGroup}(m[,i_{1x}], l_2[,i_{1x}], l_1[,i_{1x}], \beta, \text{white}[,i_{1x}])[,-(n_2 + 1)]
 \]

 \[
 m[,i_2] \leftarrow \text{simGroup}(m[,i_{2x}], l_2[,i_{2x}], l_1[,i_{2x}], \beta, \text{white}[,i_{2x}])[,-1]
 \]

- Do the same for “black” pattern.
Replace the “white” step by

```r
v <- clusterMap(cl, fun,
    list(m[,i1x], m[,i2x]),
    list(l2[,i1x], l2[,i2x]),
    list(l1[,i1x], l1[,i2x]),
    list(white[,i1x], white[,i2x]))

m[,i1] <- v[[1]][,-(n2 + 1)]
> m[,i2] <- v[[2]][,-1]
```

with `fun` created by

```r
makeSimImgHelper <- function(beta)
    function(m, l2, l1, which)
        simGroup(m, l2, l1, beta, which)
```

Need to export `nn` and `simGroup` to nodes.

- Timing: 104 seconds—almost 3 times slower.
- Problem: too much communication.
- Solution: maintain state on the nodes.
makeImgSampler <- function(img, beta, p, white.first = FALSE) {
 m <- img
 mm <- img
 <<more setup code>>
 stepWhite <- function() {
 m <<- simGroup(m, l2, l1, beta, white)
 invisible(NULL)
 }
 stepBlack <- function() ...
 accumulate <- function() ...
 getColumn <- function(i) m[, i]
 setColumn <- function(i, v) m[, i] <<- v
 pm <- function() mm
 list(stepWhite = stepWhite, stepBlack = stepBlack,
 accumulate = accumulate,
 getColumn = getColumn, setColumn = setColumn, pm = pm)
}
Serial Algorithm Using Sampler State

● The code:

```r
simImgPM <- function(img, beta, p, NN = 50, K = 50) {
  smp <- makeImgSampler(img, beta, p)
  for (i in 1:NN) {
    for (i in 1:K) {
      smp$stepWhite()
      smp$stepBlack()
    }
    smp$accumulate()
  }
  smp$pm()
}
```

● This is an object oriented design.

● `smp` is a sampler object with mutable state.

● The algorithm proceeds by sending messages to `smp`.
Towards a Parallel Version

- Create two objects and get the border columns:

  ```r
  wf2 <- if (nc2 %% 2 == 0) FALSE else TRUE
  smp1 <- makeImgSampler(img[,1:(nc2+1)], beta, p)
  smp2 <- makeImgSampler(img[,nc2:nc], beta, p, wf2)
  c1 <- smp1$getColumn(nc2)
  c2 <- smp2$getColumn(2)
  ```

- “White” step:

  ```r
  v <- list(stepWhite2(smp1, nc2 + 1, c2, nc2),
            stepWhite2(smp2, 1, c1, 2))
  c1 <- v[[1]]
  c2 <- v[[2]]
  ```

 with

  ```r
  stepWhite2 <- function(smp, i, v, j) {
    smp$setColumn(i, v)
    smp$stepWhite()
    smp$getColumn(j)
  }
  ```
Parallel Version

- Sampler will be in a global variable `smp` on each node:
  ```r
  nodePutSmp <- function(v) {
    assign("smp", v, envir = .GlobalEnv);
    NULL
  }
  clusterApply(cl, list(smp1, smp2), nodePutSmp)
  ```

 Some utility functions that use this global value:
  ```r
  nodeStepWhite2 <- function(i, v, j) {
    stepWhite2(smp, i, v, j);
    NULL
  }
  nodeStepBlack2 <- function(i, v, j) ...
  nodeAccumulate <- function() { smp$accumulate(); NULL }
  nodePM <- function() smp$pm()
  ```

- Need to export `stepWhite2` and `stepBlack2` to nodes:
Body of the parallel code:

```r
for (i in 1:NN) {
    for (j in 1:K) {
        v <- clusterMap(cl, nodeStepWhite2,
                        c(nc2 + 1, 1), list(c2, c1), c(nc2, 2))
        c1 <- v[[1]]
        c2 <- v[[2]]
        <<same for black pixels>>
    }
    clusterCall(cl, nodeAccumulate)
}
```

```
v <- clusterCall(cl, nodePM)
cbind(v[[1]][,-(nc2+1)], v[[2]][,-1])
```

Timings for $NN = 500, K = 1$:

Serial version: 31.57 seconds

Parallel version: 17.56 seconds
Some Open Issues

- Fault tolerance:
 - nodes/communication can fail
 - R processes can crash

- Error handling
 - Some computations may result in R-level errors.
 - Currently these are returned as results of class `try-error`.

- Interrupt handling

- Load balancing issues:
 - load balancing and reproducible simulations
 - integrating load balancing with `clusterApply`, `parLapply`, etc.
 - convenient control options for load balancing (e.g. chunk size)

- Support for
 - intermediate communication between nodes
 - maintaining state on nodes

The BSP model may be useful to explore.