next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 14 Up: 22S:193 Statistical Inference I Previous: Assignment 13

Solutions

5.23
For $ 0 \le z \le 1$

$\displaystyle P(Z < z\vert X=x)$ $\displaystyle = 1-(1-z)^{x}$    
$\displaystyle P(Z<z)$ $\displaystyle = \sum_{i=1}^{\infty} \frac{c}{x!}(1-(1-z)^{x}) = 1-\sum_{i=1}^{\infty}\frac{c}{x!}(1-z)^{x}$    
  $\displaystyle = 1-c\sum_{i=1}^{\infty}\frac{(1-z)^{x}}{x!} = 1-c\left[\sum_{i=0}^{\infty}\frac{(1-z)^{x}}{x!}-1\right]$    
  $\displaystyle = 1-c(e^{1-z}-1)=1-\frac{e^{1-z}-1}{e-1} = \frac{e}{e-1}(1-e^{-z})$    

5.24
Assume, without loss of generality, that $ \theta=1$. Then for $ 0 < u < v < 1$

$\displaystyle f_{X_{(1)},X_{(n)}}(u,v)$ $\displaystyle = \frac{n!}{0!(n-2)!0!}f(u)f(v)F(u)^{u}(F(v)-F(u))^{n-2}(1-F(v))^{0}$    
  $\displaystyle = n(n-1)f(u)f(v)(F(v)-F(u))^{n-2}$    
  $\displaystyle = n(n-1)(v-u)^{n-2}$    

Let

$\displaystyle Y$ $\displaystyle = X_{(1)}/X_{(n)}$    
$\displaystyle Z$ $\displaystyle = X_{(n)}$    

The range of $ (Y,Z)$ is $ \mathcal{B}=[0,1]\times[0,1]$, the inverse transformation is

$\displaystyle X_{(1)}$ $\displaystyle = YZ$    
$\displaystyle X_{(n)}$ $\displaystyle = Z$    

The Jacobian determinant is

$\displaystyle J(y,z) = \det \begin{pmatrix}z & y  0 & 1 \end{pmatrix} = z$    

So for $ 0 < z < 1$ and $ 0 < y < 1$

$\displaystyle f_{Y,Z}(y,z)$ $\displaystyle = n(n-1)(z-yz)^{n-2}z$    
  $\displaystyle = n z^{n-1} \times (n-1)(1-y)^{n-2}$    

Thus $ Y$ and $ Z$ are independent.

This proof first removes $ \theta$ from consideration since it is just a scale parameter. An alternative approach is to note that $ X_{(n)}$ is sufficient, $ X_{(1)}/X_{(n)}$ is ancillary, and use Basu's theorem in chapter 6.

5.32
a.
Suppose $ f$ is continuous at $ a$ and $ X_{n} \overset{P}{\rightarrow}
a$, $ a$ a constant. Fix $ \varepsilon > 0$. Then there exists a $ \delta > 0$ such that

$\displaystyle \vert f(x)-f(a)\vert < \varepsilon$    

if $ \vert x -a\vert < \delta$. So

$\displaystyle P(\vert f(X_{n})-f(a)\vert < \varepsilon)$ $\displaystyle \ge P(\vert X_{n}-a\vert < \delta)$    
  $\displaystyle \rightarrow 1$    

So $ f(X_{n}) \overset{P}{\rightarrow}f(a)$. The result follows if $ f(x) =
\sqrt{x}$ or $ f(x) = 1/x$ and $ a > 0$.
b.
$ f(x) = \sigma/\sqrt{x}$ is continuous at $ x=\sigma^{2}$ if $ \sigma > 0$.

5.40
a.
For any $ t$ and any $ \varepsilon > 0$, if $ X_n > t$ and $ \vert X_n-X\vert < \varepsilon$, then $ X > t - \varepsilon$. So $ X \le t
- \varepsilon$ implies that either $ X_n \le t$ or $ \vert X_n - X\vert \ge
\varepsilon$, i.e.

$\displaystyle \{X \le t - \varepsilon\} \subset \{X_n \le t \} \cup \{\vert X_n - X\vert \ge \varepsilon\}$    

So

$\displaystyle P(X \le t - \varepsilon) \le P(X_n \le t) + P(\vert X_n - X\vert \ge \varepsilon)$    

or

$\displaystyle P(X \le t - \varepsilon) - P(\vert X_n - X\vert \ge \varepsilon) \le P(X_n \le t)$    

b.
Similarly (reversing the roles of $ X$ and $ X_n$ and replacing $ t$ by $ t + \varepsilon$),

$\displaystyle P(X_n \le t) \le P(X \le t + \varepsilon) + P(\vert X_n - X\vert \ge \varepsilon)$    

c.
Suppose the CDF of $ X$ is continous at $ t$. From the previous two parts, since $ X_n \rightarrow X$ in probability we have

$\displaystyle P(X \le t - \varepsilon) \le \liminf_{n \rightarrow \infty} P(X_n...
...t) \le \limsup_{n \rightarrow \infty} P(X_n \le t) \le P(X \le t + \varepsilon)$    

for any $ \varepsilon > 0$. Since $ t$ is a coninuity point of the distribution of $ X$, $ \lim_{\varepsilon \downarrow 0}P(X \le t -
\varepsilon) = \lim_{\varepsilon \downarrow 0}P(X \le t +
\varepsilon) = P(X \le t)$, and therefore

$\displaystyle P(X \le t) \le \liminf_{n \rightarrow \infty} P(X_n \le t) \le \limsup_{n \rightarrow \infty} P(X_n \le t) \le P(X \le t)$    

So $ \lim_{n \rightarrow \infty} P(X_n \le t)$ exists and is equal to $ P(X \le t)$. Thus $ X_n \rightarrow X$ in distribution.


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 14 Up: 22S:193 Statistical Inference I Previous: Assignment 13
Luke Tierney 2004-12-03