next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 2 Up: 22S:193 Statistical Inference I Previous: Assignment 1

Solutions

1.1
a.
Toss coin 4 times:

$\displaystyle \{(H,H,H,H), \ldots\} = \{ (x_{1},x_{2},x_{3},x_{4}): x_{i} \in \{H,T\}\}$    

or

$\displaystyle \{0, 1, 2, 3, 4\}$    

b.
Count number of insect-damaged leaves:

$\displaystyle \{0, 1, \ldots, N\}$    $ N$ = # leaves (or upper bound)    
$\displaystyle \{0, 1, 2, \ldots\}$    if no upper bound is available    

c.
Measure lifetime in hours:

$\displaystyle \{0, 1, 2, \ldots\}$    if rounded (can put in upper limit)    
$\displaystyle [0,\infty)$    if fractional hours are allowed    

d.
Weight of ten-day-old rats:

$\displaystyle (0,\infty)$    
$\displaystyle (0,1000)$    in grams    

e.
Proportion of defectives:

$\displaystyle [0,1]$    
$\displaystyle \{r \in \mathbb{Q}: 0 \le r \le 1\}$    
$\displaystyle \{0/N, 1/N, \ldots, N/N\}$    if shipment size $ N$ is known    

1.2
a.
$ A \backslash B$ is defined as $ A \cap B^{c}$ . To see that $ A \backslash B = A \backslash (A \cap B)$ :

$\displaystyle A \backslash (A \cap B)$ $\displaystyle = A \cap (A \cap B)^{c}$    
  $\displaystyle = A \cap (A^{c} \cup B^{c})$ De Morgan's law    
  $\displaystyle = (A \cap A^{c}) \cup (A \cap B^{c})$ distributive law    
  $\displaystyle = \emptyset \cup (A \cap B^{c})$    
  $\displaystyle = A \backslash B$    

b.
$ B = (B \cap A) \cup (B \cap A^{c})$ :

$\displaystyle (B \cap A) \cup (B \cap A^{c})$ $\displaystyle = B \cap (A \cup A^{c})$ distributive law    
  $\displaystyle = B \cap S$    
  $\displaystyle = B$    

c.
By definition.
d.
$ A \cup B = A \cup (B \cap A^{c})$ :

$\displaystyle A \cup B$ $\displaystyle = A \cup ((B \cap A) \cup (B \cap A^{c}))$ by part (b)    
  $\displaystyle = (A \cup (B \cap A)) \cup (B \cap A^{c})$ associative law    
  $\displaystyle = A \cup (B \cap A^{c})$    

1.4
a.
$ A$ or $ B$ or both:

$\displaystyle P(A \cup B) = P(A) + P(B) - P(A \cap B)$    

b.
$ A$ or $ B$ but not both:

$\displaystyle A \Delta B$ $\displaystyle = (A \cup B) \backslash (A \cap B)$    
  $\displaystyle = (A \cap B^{c}) \cup (B \cap A^{c})$    

and the sets $ A \cap B^{c}$ and $ B \cap A^{c}$ are disjoint. Since $ A \cap B$ and $ A \cap B^c$ are disjoint and their union is $ A$ ,

$\displaystyle P(A) = P(A \cap B) + P(A \cap B^c)$    

and therefore $ P(A \cap B^c) = P(A) - P(A \cap B)$ . Similarly $ P(B \cap A^c) = P(B) - P(A \cap B)$ and therefore

$\displaystyle P(A \Delta B) = P(A) + P(B) - 2 P(A \cap B)$    

c.
At least one of $ A$ or $ B$ : $ A \cup B$ .
d.
At most one of $ A$ or $ B$ = not $ A \cap B$ = $ (A \cap
B)^{c}$ :

$\displaystyle P((A \cap B)^{c}) = 1 - P(A \cap B)$    

1.5
The event $ A \cap B \cap C$ is the event that the birth results in identical twins who are female. The proportion of births satisfying this description is

$\displaystyle P(A \cap B \cap C) = \frac{1}{90} \times \frac{1}{3} \times{1}{2} = \frac{1}{540} = 0.001852.$    

1.13
If $ A$ and $ B$ are disjoint then

$\displaystyle P(A \cup B) = P(A) + P(B) \le 1,$    

but

$\displaystyle P(A) + P(B) = P(A) + 1 - P(B^c) = \frac{1}{3} + 1 - \frac{1}{4} = \frac{13}{12} > 1,$    

so $ A$ and $ B$ cannot be disjoint if $ P(A) = \frac{1}{3}$ and $ P(B^c) = \frac{1}{4}$ . Another way to see that this is not possible: If $ A$ and $ B$ are disjoint then $ A \subset B^c$ and therefore $ P(A) \le P(B)$ , but the opposite is true.


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 2 Up: 22S:193 Statistical Inference I Previous: Assignment 1
Luke Tierney 2009-09-14