next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 10 Up: 22S:193 Statistical Inference I Previous: Assignment 9

Solutions

4.1

$\displaystyle f(x,y) = \begin{cases}\frac{1}{4} & -1 \le x, y \le 1 0 & \text{otherwise} \end{cases}$    

a.

$\displaystyle P(X^{2}+Y^{2}<1)$ $\displaystyle = \frac{\text{area of circle}}{\text{total area}}$    
  $\displaystyle = \frac{\pi}{4}$    

b.

$\displaystyle P(Y < 2 X)$ $\displaystyle = \frac{1}{2}$   by symmetry, or    
  $\displaystyle = \int_{-1}^{1}\int_{y/2}^{1}\frac{1}{4}dxdy = \int_{-1}^{1}\frac{1}{4}(1-y/2)dy$    
  $\displaystyle =\left[\frac{y}{4}-\frac{y^{2}}{16}\right]_{-1}^{1} = \frac{1}{4}+\frac{1}{4}=\frac{1}{2}$    

c.
$ P(\vert X+Y\vert<2)=1$

4.4
a.

$\displaystyle 1$ $\displaystyle = \int_{0}^{1}\int_{0}^{2}C(x+2y)dx dy = \int_{0}^{1}C(2+4y)dy$    
  $\displaystyle = C(2+2)=4C$    

So $ C=1/4$.
b.

$\displaystyle f_{X}(x)$ $\displaystyle = \int_{0}^{1}\frac{1}{4}(x+2y)dy 1_{[0,2]}(x)$    
  $\displaystyle = \frac{1}{4}(x+1) 1_{[0,2]}(x)$    

c.

$\displaystyle F(x,y)$ $\displaystyle = \int_{0}^{y}\int_{0}^{x}\frac{1}{4}(u+2v)du dv$    
  $\displaystyle = \int_{0}^{y}\frac{1}{4}(\frac{x^{2}}{2}+2vx)dv$    
  $\displaystyle = \frac{1}{4}(\frac{x^{2}}{2}y+y^{2}x) = \frac{1}{8}x^{2}y+\frac{1}{4}y^{2}x$    

for $ 0 < x < 2$ and $ 0 < y < 1$.
d.

$\displaystyle Z$ $\displaystyle = 9/(X+1)^{2}$    
$\displaystyle X$ $\displaystyle = 3/\sqrt{Z}-1$    
$\displaystyle dx$ $\displaystyle = \frac{3}{2}\frac{1}{z^{3/2}}dz$    
$\displaystyle f_{Z}(z)$ $\displaystyle = \frac{1}{4} \frac{3}{\sqrt{z}} \frac{3}{2}\frac{1}{z^{3/2}} = \frac{9}{8z^{2}}$    

for $ z \in [1,9]$.

4.5
a.

$\displaystyle P(X > \sqrt{Y})$ $\displaystyle = P(Y < X^2) = \int_0^1 \int_0^{x^2} x+y dy dx$    
  $\displaystyle = \int_0^1 x^3 + \frac{x^4}{2} dx = \frac{1}{4} + \frac{1}{10} = \frac{7}{20} = 0.35$    

b.

$\displaystyle P(X^{2} < Y < X)$ $\displaystyle = \int_{0}^{1}\int_{x^2}^{x}2x dy dx$    
  $\displaystyle = \int_{0}^{1}2x(x-x^{2})dx = \int_{0}^{1}2x^{2}-2x^{3}dx$    
  $\displaystyle = \frac{2}{3}-\frac{2}{4} = \frac{1}{6}$    

4.14
a.

$\displaystyle P(X^{2}+Y^{2}<1) = \int\int_{x^{2}+y^{2}<1}\frac{1}{2\pi}e^{-\frac{x^{2}+y^{2}}{2}}dx dy$    

Can do $ x=-\sqrt{1-y^{2}}$ to $ x=+\sqrt{1-y^{2}}$, or

$\displaystyle x$ $\displaystyle = r \cos \theta$ $\displaystyle dxdy$ $\displaystyle =r dr d\theta$    
$\displaystyle y$ $\displaystyle = r \sin \theta$    

for $ 0 \le r < 1$ and $ 0 \le \theta < 2\pi$:

$\displaystyle P(X^{2}+Y^{2})$ $\displaystyle = \int_{0}^{1}\int_{0}^{2\pi}\frac{1}{2\pi}r e^{-r^{2}/2}d\theta dr$    
  $\displaystyle = \left.-e^{-r^{2}/2}\right\vert _{0}^{1} = 1-e^{-1/2}$    

b.
The density of $ Z=X^{2}$ is

$\displaystyle f_{Z}(z) = 2 \frac{1}{2\sqrt{z}}\frac{1}{\sqrt{2\pi}}e^{-z/2} = \frac{1}{\Gamma(\frac{1}{2})2^{1/2}}z^{1/2-1}e^{-z/2}$    

for $ z > 0$; this is a Gamma$ (1/2,2) = \chi^{2}_{1}$ density. Using a computer,

$\displaystyle P(X^{2} < 1) = 0.6826$    

4.7
Draw a picture:
\includegraphics[height=1.25in]{4-7.eps}

$\displaystyle P(X+Y \le 9:00) = P(X \le 9:00 - Y) = \frac{1}{2}$    

(Is independence a reasonable assumption?)

4.16
LATEX2Html is giving me grief about this one-it is available in the pdf version.


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 10 Up: 22S:193 Statistical Inference I Previous: Assignment 9
Luke Tierney 2004-12-03