Exponential
,
![$\displaystyle E[Y]$](img309.png) |
![$\displaystyle = \alpha-\gamma E[\log X]$](img370.png) |
|
 |
![$\displaystyle = E[e^{t \log X}] = E[X^{t}] = \int_{0}^{\infty}x^{(t+1)-1}e^{-x}dx = \begin{cases}\Gamma(t+1) & t > -1 \infty & t \le -1 \end{cases}$](img372.png) |
|
![$\displaystyle E[\log X]$](img373.png) |
Euler's number |
|
![$\displaystyle E[(\log X)^{2}]$](img376.png) |
Euler's number |
|
Var |
 |
|
Once the moment generating function has been obtained, the rest
can be done in Mathematica: The derivative of the Gamma
function is obtained as
In[23]:= D[Gamma[x],x]
Out[23]= Gamma[x] PolyGamma[0, x]
The value at
is obtained using the ``slash-dot'' operator:
In[24]:= % /. x->1
Out[24]= -EulerGamma
The variable %
refers to the last output expression. The numerical
value is obtained to 10 digits by
In[25]:= N[%,10]
Out[25]= -0.5772156649
The second derivative of the Gamma function is
In[26]:= D[Out[23],x]
2
Out[26]= Gamma[x] PolyGamma[0, x] + Gamma[x] PolyGamma[1, x]
Substituting
produces
In[27]:= % /. x->1
2
2 Pi
Out[27]= EulerGamma + ---
6
In[28]:= N[%,10]
Out[28]= 1.978111991