next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 8 Up: 22S:193 Statistical Inference I Previous: Assignment 7

Solutions

3.1
There are $ n = N_{1}-N_{0}+1$ values. Let $ Y=X-N_{0}+1$. Then from problem 2.24.b,

$\displaystyle E[Y]$ $\displaystyle = \frac{n+1}{2}$    
Var$\displaystyle (Y)$ $\displaystyle = \frac{n^{2}-1}{12}$    

So

$\displaystyle E[X]$ $\displaystyle = N_{0}-1+E[Y] = N_{0}-1+\frac{N_{1}-N_{0}+2}{2} = \frac{N_{1}+N_{0}}{2}$    
Var$\displaystyle (X)$ $\displaystyle =$   Var$\displaystyle (Y) = \frac{(N_{1}-N_{0}+1)^{2}-1}{12}$    

3.3
Need: Probability:

$\displaystyle (1-(1-p)^{3}) p (1-p)^{3}$    

3.7
$ P(X \ge 2) = 0.99$ means

$\displaystyle P(X=0)+P(X=1) = e^{-\lambda}+\lambda e^{-\lambda} = 0.01$    

Solution is around 6.5.

3.12
$ X$ is Binomial($ n,p$) and $ Y$ is negative binomial($ r,p$) (zero based, $ Y$ counts number of failures).

$\displaystyle F_{X}(r-1)$ $\displaystyle = P($$ r-1$ or fewer successes in $ n$ trials$\displaystyle )$    
  $\displaystyle = 1-P($$ r$ or more successes in $ n$ trials$\displaystyle )$    
  $\displaystyle = 1-P($$ r$-th success on or before $ n$-th trial$\displaystyle )$    
  $\displaystyle = 1-P($number of failures before $ r$-th success $ \le n-r$$\displaystyle )$    
  $\displaystyle = 1-F_{Y}(n-r)$    


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 8 Up: 22S:193 Statistical Inference I Previous: Assignment 7
Luke Tierney 2004-12-03