next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 6 Up: 22S:193 Statistical Inference I Previous: Assignment 5

Solutions

2.5
$ X \sim U[0,2\pi]$ and $ Y = \sin^{2}(X)$. Write

$\displaystyle \sin^{2}(x) = \begin{cases}\frac{1}{2} + \frac{1}{2}\sin 2\left(x...
...\sin 2\left(x-\frac{7}{4}\pi\right) & \frac{3}{2}\pi < x \le 2\pi \end{cases}$    

So

$\displaystyle g_{1}^{-1}(y)$ $\displaystyle = \frac{1}{2}$asin$\displaystyle (2y-1)+\frac{1}{4}\pi$    
$\displaystyle g_{2}^{-1}(y)$ $\displaystyle = \frac{1}{2}$asin$\displaystyle (-2y+1)+\frac{3}{4}\pi$    
$\displaystyle g_{3}^{-1}(y)$ $\displaystyle = \frac{1}{2}$asin$\displaystyle (2y-1)+\frac{5}{4}\pi$    
$\displaystyle g_{4}^{-1}(y)$ $\displaystyle = \frac{1}{2}$asin$\displaystyle (-2y+1)+\frac{7}{4}\pi$    

and

$\displaystyle \left\vert\frac{d}{dy}g_{i}^{-1}(y)\right\vert = \frac{1}{\sqrt{1-(2y-1)^{2}}}$    

So for $ 0 < y < 1$

$\displaystyle f_{Y}(y)$ $\displaystyle = 4 \frac{1}{2\pi} \frac{1}{\sqrt{1-(2y-1)^{2}}}$    
  $\displaystyle = \frac{2}{\pi} \frac{1}{2 \sqrt{y} \sqrt{1-y}}$    
  $\displaystyle = \frac{1}{\pi\sqrt{y-y^{2}}}$    

For the alternative approach,

$\displaystyle F_{Y}(y) = 2 P(X \le x_{1}) + 2 P(x_{2} \le X \le \pi)$    

Since $ \sin x_{i} = y$,

$\displaystyle \left\vert\frac{d x_{i}}{dy}\right\vert = \frac{1}{2 \sqrt{y-y^{2}}}$    

and thus

$\displaystyle F_{Y}'(y) = \frac{4}{2\pi} \frac{1}{2\sqrt{y-y^{2}}} = \frac{1}{\pi\sqrt{y-y^{2}}}$    

2.8
$ F^{-1} = \inf\{x: F(x) \ge y\}$
a.

$\displaystyle F(x)$ $\displaystyle = \begin{cases}0 & x < 0 1-e^{-x} & x \ge 0 \end{cases}$   $\displaystyle F^{-1}(y)$ $\displaystyle = \begin{cases}-\infty & y=0 -\log(1-y) & y > 0 \end{cases}$    

b.

$\displaystyle F(x)$ $\displaystyle = \begin{cases}\frac{1}{2}e^{x} & x < 0 \frac{1}{2} & 0 \le x < 1 1-\frac{1}{2}e^{1-x} & x \ge 1 \end{cases}$   $\displaystyle F^{-1}(y)$ $\displaystyle = \begin{cases}\log 2y & 0 \le y \le 1/2 1-\log(2(1-y)) & 1/2 < y \le 1 \end{cases}$    

c.

$\displaystyle F(x)$ $\displaystyle = \begin{cases}\frac{1}{4} e^{x} & x < 0 1-\frac{1}{4} e^{-x} & x \ge 0 \end{cases}$   $\displaystyle F^{-1}(y)$ $\displaystyle = \begin{cases}\log (4y) & 0 \le y < 1/4 0 & 1/4 \le y < 3/4 -\log(4(1-y)) & 3/4 \le y \le 1 \end{cases}$    

2.9
LATEX2Html is giving me grief about this one-it is available in the pdf version.
2.11
a.

$\displaystyle E[X^{2}]$ $\displaystyle = \int_{-\infty}^{\infty}x^{2}\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}dx$    
  $\displaystyle = \int_{-\infty}^{\infty}x\frac{x}{\sqrt{2\pi}}e^{-x^{2}/2}dx$    
  $\displaystyle =\left.-x\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}\right\vert _{-\infty}^{\infty} + \int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}dx$    
  $\displaystyle = 1$    

or

$\displaystyle E[X^{2}] = E[Y]$ $\displaystyle = \int_{0}^{\infty}y\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{y}}e^{-y/2}dy$    
  $\displaystyle = \frac{1}{2\pi}\int_{0}^{\infty}\sqrt{y}e^{-y/2}dy$    
  $\displaystyle = \frac{2^{3/2}}{\sqrt{2\pi}}\int_{0}^{\infty}z^{3/2-1}e^{-z}dz$    
  $\displaystyle = \frac{2^{3/2}}{\sqrt{2\pi}}\Gamma(3/2) = \frac{2}{\sqrt{\pi}}\Gamma(3/2)$    
  $\displaystyle = \frac{2}{\sqrt{\pi}}\Gamma(1/2)\frac{1}{2} = \frac{\Gamma(1/2)}{\sqrt{\pi}} = 1$    

b.

$\displaystyle f_{Y}(y)$ $\displaystyle = \begin{cases}2 e^{-y^{2}/2}\frac{1}{2\sqrt{y}} & y > 0 0 & y < 0 \end{cases}$    
$\displaystyle E[Y] = E[\vert X\vert]$ $\displaystyle = 2\int_{0}^{\infty}ye^{y^{2}/2}\frac{1}{\sqrt{2\pi}}dy$    
  $\displaystyle = 2 \left[\left.-\frac{1}{\sqrt{2\pi}}e^{-y^{2}/2}\right\vert _{0}^{\infty} \right] = 2\frac{1}{\sqrt{2\pi}} = \sqrt{\frac{2}{\pi}}$    
$\displaystyle E[Y^{2}]$ $\displaystyle = E[X^{2}] = 1$    
Var$\displaystyle (Y)$ $\displaystyle = 1-\frac{2}{\pi}$    

2.14
(a)

$\displaystyle E[X]$ $\displaystyle = \int_{0}^{\infty}(1-F(x))dx$    
  $\displaystyle = \int_{0}^{\infty}1(1-F(x))dx$    
  $\displaystyle = \left.x(1-F(x))\right\vert _{0}^{\infty}+\int_{0}^{\infty}xf(x)dx$    

[ $ x(1-F(x)) \le \int_{x}^{\infty}uf(u)du\rightarrow 0$ if $ E[X]<\infty$]
(b)
Write the expectation as

$\displaystyle E[X] = \sum_{i=0}^\infty i f_X(i) = \sum_{i=1}^\infty i f_X(i) = \sum_{i=1}^\infty \sum_{j=1}^i f_X(i)$    

replacing $ i f_X(i)$ by a sum that adds up $ f_X(i)$ $ i$ times. Change the order of summation:

$\displaystyle \sum_{i=1}^\infty \sum_{j=1}^i f_X(i)$ $\displaystyle = \sum_{i=1}^\infty \sum_{j=i}^\infty f_X(i) = \sum_{j=1}^\infty P(X \ge j)$    
  $\displaystyle = \sum_{j=1}^\infty (1 - F_X(j-1)) = \sum_{k=0}^\infty (1 - F_X(k))$    

Since $ F_X$ is a right-continuous step function with jumps at the integers,

$\displaystyle 1 - F_X(k) = \int_k^{k+1} 1 - F_X(x) dx$    

for $ k = 0, 1, 2, \dots,$ so

$\displaystyle E[X] = \int_0^\infty 1 - F_X(x) dx$    

in this case as well

The result holds for all non-negative random variables. A general derivation:

$\displaystyle E[X]$ $\displaystyle = E\left[\int_{0}^{X}1du\right]$    
  $\displaystyle = E\left[\int_{0}^{\infty}h(X,u)du\right]$    

where

$\displaystyle h(a,b) = \begin{cases}1 & \text{if $a,b \ge 0$ and $a > b$} 0 & \text{otherwise} \end{cases}$    

Reverse order of integration:

$\displaystyle E[X] = \int_{0}^{\infty}E[h(X,u)]du$    

For fixed $ u$, $ h(X,u) = 1$ if and only if $ X > u$, so

$\displaystyle E[h(X,u)] = P(X > u) = 1 - F(u)$    

So

$\displaystyle E[X] = \int_{0}^{\infty} 1-F(u) du$    

for any $ F$ where $ X \ge 0$.

2.16
$ P(T>t) = ae^{-\lambda t}+(1-a)e^{-\mu t}$ for $ t>0$.

$\displaystyle E[T]$ $\displaystyle = \int_{0}^{\infty}P(T>t)dt = a\int_{0}^{\infty}e^{-\lambda t}dt + (1-a)\int_{0}^{\infty}e^{-\mu t}dt$    
  $\displaystyle = \frac{a}{\lambda}\int_{0}^{\infty} \lambda e^{-\lambda t} dt + \frac{1-a}{\mu} \int_{0}^{\infty} \mu e^{-\mu t} dt$    
  $\displaystyle = \frac{a}{\lambda} + \frac{1-a}{\mu}$    

2.24
a.
$ f(x) = a x^{a-1}$, $ 0 < x < 1$, $ a > 0$.

$\displaystyle E[X]$ $\displaystyle = \int_{0}^{1}a x^{a}dx = \frac{a}{a+1}$    
$\displaystyle E[X^{2}]$ $\displaystyle = \int_{0}^{1}a x^{a+1}dx = \frac{a}{a+2}$    
Var$\displaystyle (X)$ $\displaystyle = \frac{a}{a+2}-\left(\frac{a}{a+1}\right)^{2}$    

b.
$ f(x) = \frac{1}{n}$, $ x = 1, 2, \ldots, n$.

$\displaystyle E[X]$ $\displaystyle = \sum_{i=1}^{n}\frac{i}{n} = \frac{1}{n} \sum_{i=1}^{n}i = \frac{1}{n}\frac{n(n+1)}{2} =\frac{n+1}{2}$    
$\displaystyle E[X^{2}]$ $\displaystyle = \sum_{i=1}^{n}\frac{i^{2}}{n} =\frac{1}{n}\sum_{i=1}^{n}i^{2} =\frac{1}{n}\frac{n(n+1)(2n+1)}{6} =\frac{(n+1)(2n+1)}{6}$    
Var$\displaystyle (X)$ $\displaystyle = \frac{(n+1)(2n+1)}{6}-\left(\frac{n+1}{2}\right)^{2} = (n+1) \left(\frac{2n+1}{6}-\frac{n+1}{4}\right)$    
  $\displaystyle = (n+1) \frac{4n+2-3n-3}{12} =(n+1)\frac{n-1}{12} = \frac{n^{2}-1}{12}$    

c.
$ f(x) = \frac{3}{2}(x-1)^{2}$, $ 0 < x < 2$.

$\displaystyle E[X]$ $\displaystyle = \int_{0}^{2}x\frac{3}{2}(x-1)^{2}dx = 1$    
Var$\displaystyle (X)$ $\displaystyle = E[(X-1)^{2}]$    
  $\displaystyle = \int_{0}^{2}\frac{3}{2}(x-1)^{4}dx$    
  $\displaystyle = \frac{3}{2}\left.\frac{(x-1)^{5}}{5}\right\vert _{0}^{2} = \frac{3}{2}\times\frac{2}{5} = \frac{3}{5}$    


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 6 Up: 22S:193 Statistical Inference I Previous: Assignment 5
Luke Tierney 2004-12-03