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Intro

The goal of this project was to provide a package that would provide someone with the capability to analyze
text data. We found a data set with many tweets in it. Each tweet was categorized as part of a disaster
or not part of a disaster. We wanted to train a model that would classify each tweet into a “Yes” or “No”
response. After the tweet was classified, we would then test it out to see what the misclassification rate of our
model would be. In order to perform this task, we included functions from Python and R into one package.

The data that we used comprised of 7000 tweets. One column was the document id, another column was the
actual text, and a third column was the response variable classifying the tweet as a 1 or a 0. In this case,
tweets about a disaster were classified as a 1 and tweets that were not about a disaster were classified as a 0.
An excerpt of what some of the tweets from the original data can be seen below:

## [1] "Forest fire near La Ronge Sask. Canada"
## [2] "All residents asked to 'shelter in place' are being notified by officers. No other evacuation or shelter in place orders are expected"
## [3] "13,000 people receive #wildfires evacuation orders in California "
## [4] "Just got sent this photo from Ruby #Alaska as smoke from #wildfires pours into a school "
## [5] "#RockyFire Update => California Hwy. 20 closed in both directions due to Lake County fire - #CAfire #wildfires"

Cleaning the Data in R

In order to work with the data, we found that turning the list of tweets into a “corpus” would be a good
starting point to improve the computation time. The package includes functions that turn the initially turns
the data into a corpus. Once we had our corpus, we began to clean the data. Some of these cleaning steps
included turning the words to lower case, removing extra spaces, removing numbers, removing puncuation,
and removing non-English words. Probably one of the most interesting tasks when cleaning the text data
was to “stem” the words. Consider words like “compute”, “computed”, “computes”, and “computing.” To
consider all of these words as different would be doing our model a disservice. The idea of steming words is
that we chop off the last part and turn them all into a similar word such as “compute.” After this cleaning
process, we turned the data into a document term matrix. A document term matrix is a matrix where every
row represents a document (tweet) and every column represents a word. The number of times that each word
occurs in each document is listed in this document term matrix. A brief excerpt of what a document term
matrix looks like can be seen below:

## Terms
## Docs aba abandon abc abcnew abl ablaz absolut abstorm abus access
## 1 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0

Notice that the excerpt used contains many zeros. The matrix is mostly sparse. In fact, there are only about
50,000 out 17,600,000 non-zero entries. It can be difficult to visualize the data when analyzing text so we
decided that using a word cloud would be really helpful. The function make.word.cloud creates a word cloud
of the 50 words that occured the most. This ended up being a lot easier task then we orignially anticipated
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since there was a package that already did most of the work upfront. We thought it was a useful tool though
so we decided to aggregate it into our final project for text analysis. For a word cloud, the size of each word
represents how many times it occurs. We decided to use color as a random variable because we were trying
to create a really striking data visualization. An example of a word cloud from our training data can be seen
below:
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Cleaning the Data in with previous Python script

One goal of this project was to integrate python code with R. This was primarily done using the reticulate
package. In this project, we primarily utilized the abilities of directly importing a python module and
smoothly converting between python and R data types. This allowed us to use previously a previously written
python script (author is Jessie), which cleaned text data, and stored counts with words in a python list.
Although R has similar capabilities with it’s own libraries to handle text, it is important to not redo work for
already written code. The python module utilized the NLTK (Natural Language Toolkit) and gives options
of removing digits, removing stop words, removing hyperlinks, and using the Porter Stemming Algorithm to
stem words. However, when calling it in R, all those options are forced to be true. One difference between
this and what was described above is the format of data returned. With R, the data is initially drawn
in as a DocumentTermMatrix, but here it is loaded in as a large matrix in which the rows represent the
sentences/tweets and the columns represent a word. Upon loading, a global variable importM is created which
houses all the python functions.
tweetsFromPython = readAndCleanWords(dataFile,3)$counts
labels = getLabels(dataFile, 4)
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Analyzing the Data in R

As far as analyzing the data in R goes, we used Naive Bayes Spam Filtering. We originally anticipated
using a combination of the EM algorithm for analyzing our text but after submitting our topic proposal, we
noticed that you suggested Naive Bayes Spam Filtering. After doing a little bit of reading online, we realized
that this is regularly regarded as being a very quick and accurate way to go about doing text analsis so we
built a function based on that method. The text data was cleaned using our other functions and then we
were able to do Naive Bayes Spam Filtering while tweaking two parameters. We have the ability with our
function to tweak how much training and how much test data is used. We also have the ability to tweak what
the minimum frequency of each word to occur is included. For our own curiousity, we decided to compare
accuracy of prediction and computation time based on the minimum frequency used in Naive Bayes Spam
Filtering. Notice there are two plots — one is based on computation time and the other is based on accuracy.
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As expected, lowering the minimum frequency has a profound impact on computation time and accuracy.
As the amount of data decreases, accuracy and computation time both go down. This project was really
unique for us because previously, we had no experience with text analysis and we both got a lot of practice
with looking at strings and figuring out how to analyze them. We think it is really interesting that without
sentence structure or word order, the content of a sentence can be classified correctly up to eighty percent of
the time. Thanks for the opportunity to explore such an interesting topic!

Home Grown Naive Bayes

Another option to using the naiveBayes function in the e1071 package was to write our own. For this
implementation, we only consider the binary case. Naive Bayes works by calculating conditional probabilities
of a data point occuring given a particular class P (x1, x2...|Classi). However, the goal is achieve the reverse,
P (Classi|x1, x2, ...). We know by from Bayes Rule that P (x1, x2...|Classi) ∗P (Classi) ∝ P (Classi|x1, x2...),
and if the assumption of independence is made the calculations needed are mainly the multiplication of
probabilities. However, we know that we must take sums of logs instead of products. In order to avoid the
problem of having probabilities of 0, a small constant was added (1e-5). In this dataset, that probability is
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less than just seeing the word once. Because of the large size of the data, this calcuation can sometimes be
slow, so given a cluster created from the parallel package can be given as input to speed up calculation.
cl = makeCluster(2)
system.time(testNB.binary(tweetsFromPython[1:40,], tweetsFromPython[41:7000,], labels[41:7000]))

## user system elapsed
## 27.786 2.568 30.372
system.time(testNB.binary(tweetsFromPython[1:20,], tweetsFromPython[21:7000,], labels[21:7000], cl))

## user system elapsed
## 1.578 0.232 9.854
stopCluster(cl)

Cross Validation for different models

One way to choose a model is through cross-validation. By testing different models on different folds of the
data, we are able to get a clearer picture of which model generalizes best. One way to reduce the model is by
selecting words based on their frequency. Here we can choose a range of frequencies and compare the mean
squared error (which in this case is just accuracy).
mses = CVtoChooseModel(c(4,4,4), c(4,5,6), tweetsFromPython, labels, N = 5)
mses

## mses
## 4 - 4 0.4133721
## 4 - 5 0.4082496
## 4 - 6 0.3976091

Here we can see that having more words in the model does slightly better in accuracy. Alternitively, we can
just pick a word frequency to narrow down our dataset and do cross-validation on the whole model
sixwords = reduceWords(6, tweetsFromPython, 6)
sixcv = NBcv(sixwords, labels, 10)
sixcv$aMSE

## [1] 0.4104782

When using Naive bayes with all words in the model, we get near 78% accuracy with our function. This is
validated with 10-fold-cross validation and is in line with what is seen with the naiveBayes function in the
previously used package.
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