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A Discussion of Low-Order
Numerical Integration Formulas
for Rigid and Flexible Multibody
Dynamics
The premise of this work is that the presence of high stiffness and/or frictional contact/
impact phenomena limits the effective use of high order integration formulas when nu-
merically investigating the time evolution of real-life mechanical systems. Producing a
numerical solution relies most often on low-order integration formulas of which the
paper investigates three alternatives: Newmark, HHT, and order 2 BDFs. Using these
methods, a first set of three algorithms is obtained as the outcome of a direct index-3
discretization approach that considers the equations of motion of a multibody system
along with the position kinematic constraints. The second batch of three algorithms
draws on the HHT and BDF integration formulas and considers, in addition to the
equations of motion, both the position and velocity kinematic constraint equations. Nu-
merical experiments are carried out to compare the algorithms in terms of several met-
rics: (a) order of convergence, (b) energy preservation, (c) velocity kinematic constraint
drift, and (d) efficiency. The numerical experiments draw on a set of three mechanical
systems: a rigid slider-crank, a slider-crank with a flexible body, and a seven body
mechanism. The algorithms investigated show good performance in relation to the
asymptotic behavior of the integration error and, with one exception, result in compa-
rable CPU simulation times with a small premium being paid for enforcing the velocity
kinematic constraints. �DOI: 10.1115/1.3079784�
Introduction
A multitude of phenomena, processes, and applications are de-

cribed in terms of mixed systems of differential equations com-
ined with linear and nonlinear algebraic equations, most often
orresponding to models coming from engineering, physics, and
hemistry. Differential equations relate certain quantities to their
erivatives with respect to time and/or space variables. Algebraic
quations usually model conservation laws and constraints present
n the system. When there are derivatives with respect to only one
ndependent variable �usually time�, the equations are called
ifferential-algebraic equations �DAEs�. DAEs are basically dif-
erential equations defined on submanifolds of Rn. For the dynam-
cs of multibody systems, the constrained equations of motion can
e expressed in the form �see, for instance, Refs. �1,2��

q̇ = v

M�q�v̇ = Q�t,q,v,�,�,u�t�� − �q
T�q,t�� − �v

T�v,q,t��
�1�

0 = ��q,t�

0 = ��v,q,t�

here q�Rn are the generalized coordinates, v�Rn are the gen-
ralized velocities, ��Rm and ��Rp are the Lagrange multipli-
rs, and u :R→Rc represent time dependent external dynamics,
.g., control variables. The matrix M�q� is the generalized mass
atrix, Q�t ,q ,v ,� ,� ,u�t�� represents the vector of generalized
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applied forces, ��q , t� is the set of m holonomic constraints, i.e.,
position-level kinematic constraints, and ��v ,q , t� is the set of p
nonholonomic constraints, i.e., velocity-level kinematic con-
straints �3,4,1�. Differentiating the kinematic constraints with re-
spect to time leads to the additional equations

0 = �q�q,t�v + �t�q,t�

0 = �q�q,t�v̇ + ��q�q,t�v�qv + 2�qt�q,t�v + �tt�q,t� �2�

0 = �v�v,q,t�v̇ + �q�v,q,t�v + �t�v,q,t�

Equations �1� and �2� form an overdetermined system of DAEs,
having strictly more equations than variables. The ability to solve
such systems is relevant for several classes of applications such as
multibody dynamics and molecular dynamics.

When finding the solution of Eqs. �1� and �2�, most of the
numerical solvers currently used share some or all of the follow-
ing drawbacks: numerical drift that occurs when the solution does
not stay on the manifold of constraints at the position and/or ve-
locity levels and as such might become nonphysical, inability to
deal efficiently with stiffness, loss of underlying properties of the
exact flow and trajectories, no preservation of invariants such as
energy, introduction of undesired numerical damping, and the re-
duction in convergence order when solving stiff problems that
arise often in applications. Whereas techniques for the numerical
solution of ordinary differential equations �ODEs� go back more
than three centuries and are well established, the numerical solu-
tion of DAEs has a comparatively short history �5–7�. The first
class of numerical techniques eventually applied to DAEs was
published in Ref. �8� for the solution of ODEs. Since then DAEs
have widely penetrated the numerical analysis, engineering, and
scientific computing communities and are increasingly encoun-
tered in practical applications. Still, numerically solving DAEs
poses fundamental difficulties not encountered when solving

ODEs. Specialized numerical techniques have been developed,
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ypically belonging to one of the two classes: state-space methods
r direct methods. For a recent review of this topic, the reader is
eferred to Ref. �9�.

State-space methods first reduce the DAEs to a smaller dimen-
ion ODE problem, thus benefiting from the extensive body of
nowledge associated with ODE solvers. Specifically, the DAEs
nduce differential equations on the constraint manifold �10�,
hich can be reduced on a subspace of the n-dimensional Euclid-

an space. The resulting state-space ODEs �SSODEs� are inte-
rated using classical numerical integration formulas. The one-to-
ne local mapping from the manifold to the subspace of
ndependent coordinates is then used to determine the point on the

anifold corresponding to the solution of the SSODEs. This
ramework formalizes the theory of numerical solution of DAEs
sing the language of differential manifolds �11�. Practical algo-
ithms drawing on this class of methods are presented in Refs.
12,13,10,14�. The main factor that differentiates these algorithms
s the choice of manifold parametrization.

State-space methods have been subjected to criticism in two
spects. First, the choice of parametrization generally is not glo-
al. Second, poor choices of the projection space result in
SODEs that are numerically demanding, mainly at the expense
f overall efficiency and robustness of the algorithm �15�. Al-
hough the theoretical framework for these methods was outlined
everal years ago �16,10�, it was only relatively recently that im-
licit numerical integration methods for DAEs have been pro-
osed in the context of SSODEs for multibody dynamics analysis
17,18�. The major intrinsic drawback associated with state-space
ethods remains the expensive DAE to ODE reduction process

hat is further exacerbated in the context of implicit integration,
hich is the norm in industry applications.
Alternatively, direct methods discretize the constrained equa-

ions of motion in Eq. �1�, possibly after reducing the index of the
AEs by considering some or all of the kinematic constraint

quations in Eq. �2�. Original contributions in this direction are
ound in Refs. �19,20,5,21–26�. When dealing with systems that
nclude flexible substructures and bodies, numerical methods have
een sought that are capable of introducing controllable numerical
issipation to damp out spurious high frequencies, an artifact of
he spatial discretization, without affecting the low frequency

odes of the system and the accuracy of the method �27,28�.
everal methods have been proposed for structural dynamics
imulation, such as the HHT method �also called �-method� �29�
nd the generalized �-method �30�. These are order 2 methods
roposed in conjunction with the ODE problems. For DAEs stem-
ing from multibody dynamics analysis, several �-type algo-

ithms have been reported in the literature �31,32�. A thorough
iscussion of theoretical and implementation aspects related to a
HT-based numerical integrator for the simulation of large me-

hanical systems with flexible bodies and penalty-based contact/
mpact can be found in Ref. �33�, while a convergence analysis of
he generalized-� method has been provided in Ref. �34�. How-
ver, until recently there has been no HHT type method that also
tabilized the solution on the velocity constraint manifold, an at-
ribute that is important in mechatronics applications and in deal-
ng with joint friction/contact models. Two of the six algorithms
onsidered in this study address this issue of velocity constraint
tabilization and they draw on work presented in Refs. �35,36�.

This paper is organized as follows: First, the six algorithms
nvestigated in this study are introduced. For each algorithm, a
hort overview of existing convergence results is provided along
ith the expression of the Jacobian associated with the nonlinear
iscretization system. The emphasis is on HHT-SI2, a new
ariable-damping stabilized overdetermined index-2 algorithm
hose convergence analysis is upcoming �37�. Next, a set of nu-
erical experiments drawing on three mechanical systems com-

ares the algorithms in terms of several metrics: global integration
rror, energy preservation, velocity constraint violation, and effi-

iency. A set of brief remarks concludes the paper.
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2 Low-Order Integration Algorithms
The first integration method considered in this study is essen-

tially the BDF method of order 2 proposed in Ref. �8�, and it
serves the purpose of providing a reference when comparing the
performance of the other algorithms. The second-order BDF for-
mula is cast into a form suitable for direct numerical integration of
second-order differential equations:

qn+1 = 4
3qn − 1

3qn−1 + h� 8
9 q̇n − 2

9 q̇n−1� + 4
9h2q̈n+1

�3�
q̇n+1 = 4

3 q̇n − 1
3 q̇n−1 + 2

3hq̈n+1

These formulas, used in conjunction with the equations of motion
and position kinematic constraint equations, lead to a second-
order method herein called NSTIFF:

M�qn+1�q̈n+1 + ��q
T��n+1 − Qn+1 = 0

�4�
9

4h2��qn+1,tn+1� = 0

As suggested in Ref. �33� and recently analyzed in Ref. �38�, the
scaling of the kinematic constraint equations by the inverse of the
integration step-size h2 is done in order to prevent an ill condi-
tioning of the Jacobian JNSTIFF associated with the Newton-type
method employed to solve Eq. �4�, which is regarded as a nonlin-
ear system in q̈n+1 and �n+1:

JNSTIFF = �M + P �q
T

�q 0
�

where P= 4
9h2�M�q�q̈+ ��q

T��−Q�q− 2
3hQq̇. Note that when h

→0 the condition number of JNSTIFF remains bounded. The scal-
ing of the position constraint equation by 9 /4h2 leads to a
bounded value. To see this, first, note that for all the numerical
integration formulas considered herein, locally, �qn+1− q̃n+1�
=O�h2�, where q̃n+1 is the exact solution and qn+1 is an approxi-
mation obtained after taking an integration step. Then,

��q,t� = ��q̃,t� + �q�q̃,t��q − q̃� + . . . = �q�q̃,t��q − q̃� + . . .

where the subscript n+1 on q, q̃, and t was dropped for conve-
nience. It follows that 9 /4h2��qn+1 , tn+1� is O�h0�, which justifies
the scaling proposed in Eq. �4�.

The second numerical integration method considered uses the
Newmark formulas �39�. It requires the selection of two param-
eters ��1 /2 and �� ��+1 /2�2 /4 based on which, given the ac-
celeration q̈n+1 at the new time step tn+1, the new position and
velocity are obtained as

qn+1 = qn + hq̇n +
h2

2
��1 − 2��q̈n + 2�q̈n+1�

�5�
q̇n+1 = q̇n + h��1 − ��q̈n + �q̈n+1�

Given an integration step-size h, the discretization scheme oper-
ates on the equations of motion and position kinematic constraint
equations to lead to the nonlinear system:

�Mq̈�n+1 + ��q
T��n+1 = Qn+1 �6�

1

�h2��qn+1,tn+1� = 0 �7�

The method, called hereafter Newmark, is order 1 unless �=1 /2
and �=1 /4. This choice leads to the trapezoidal method, which is
known in the literature to have stability problems when used in
conjunction with index-3 DAEs �31�. Note that the Jacobian
JNewmark is identical to JNSTIFF, except that the matrix P is re-

ˆ 4 2
placed by a matrix P obtained by replacing 9 with � and 3 with �.
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Referred to as HHT-I3, the third method considered in this
tudy relies on the HHT method �29�, widely used in the structural
ynamics community and first considered in the context of multi-
ody dynamics analysis in Ref. �31�. HHT-I3 is defined as follows
note that the discretized equations of motion have been scaled by
/1+��:

qn+1 = qn + hq̇n +
h2

2
��1 − 2��an + 2�an+1�

q̇n+1 = q̇n + h��1 − ��an + �an+1�
�8�

1

1 + �
�M�q�a�n+1 + ��q

T� − Q�n+1 −
�

1 + �
��q

T� − Q�n = 0

1

�h2��qn+1,tn+1� = 0

he notation used in Eq. �8� is meant to emphasize that there is a
istinction between q̈n+1 and an+1 �compare with Eq. �5��. Con-
retely, an+1 is an approximation of q̈�tn+ �1+��h�. This raises
ome difficulties in choosing a0, an attribute that is associated
ith the use of HHT in general and is not specific to HHT-I3. In
ef. �36�, it is recommended to take a0= q̈0 and in spite of this
pproximation the same convergence results hold for the global
ehavior of the method. For more accurate results, an implicit and
herefore slightly more involved way of computing a0 is sug-
ested in Ref. �35�. Finally, note that the last two equations in Eq.
8� lead to a nonlinear system that is solved with a Newton-type
ethod for an+1 and �n+1. The associated Jacobian

JHHTI3 = � 1

1 + �
M + P̂ �q

T

�q 0
	

oes not become ill conditioned when h→0. Taking the limit, P̂
0 and JHHTI3 is nonsingular as long as the kinematic constraints

re independent and the symmetric mass matrix is nonsingular.
The last three numerical integration methods considered herein

ake into account the velocity kinematic constraint equations. The
alient attribute of these methods is a resulting set of consistent
eneralized velocities, an aspect relevant in frictional contact and
ontrols applications. The method referred to as NSTIFF-SI2 is an
mplementation of the stabilized index-2 formulation reported in
ef. �20� that uses second-order BDF formulas �8�:

qn+1 = 4
3qn − 1

3qn−1 + 2
3hq̇n+1

�9�
vn+1 = 4

3vn − 1
3vn−1 + 2

3hv̇n+1

STIFF-SI2 explicitly accounts for the velocity kinematic con-
traint equations and relies on an extra set of Lagrange multipliers

to enforce these constraints. The unknowns are v̇, q̇, �, and �
nd the new configuration at tn+1 is the solution of the following
ystem of nonlinear equations:

M�qn+1�v̇n+1 + �q
T�qn+1��n+1 − Q�tn+1,qn+1,vn+1� = 0

vn+1 − q̇n+1 + �q
T�qn+1��n+1 = 0

�10�
3

2h
��qn+1,tn+1� = 0

3

2h
�q�qn+1,tn+1�vn+1 +

3

2h
�t�qn+1,tn+1� = 0

hen using a Newton-type method, the associated Jacobian as-

umes the form
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JNSTIFF-SI2 = �
M

2h

3
�Mv̇ + �q

T� − Q�q �q
T 0

2h

3
I − I −

2h

3
��q

T��q 0 �q
T

�q 0 0 0

��qv�q + �qt �q 0 0

	
Under mild conditions �symmetric nonsingular mass matrix and
independent set of kinematic constraints�, it can be easily shown
that JNSTIFF_SI2 remains nonsingular when h→0. Also note that in
the absence of discretization errors, � would be identically zero.

The fifth method considered in this study introduces a correc-
tion into the Newmark formulas based on the constraint accelera-
tions and was shown to have global convergence order 2 �35,36�.
Given a configuration �qn , q̇n ,an� and defining f�t ,q , q̇�
ªM−1�q�Q�t ,q , q̇� and r�q ,��ª−M−1�q��q

T�, the unknowns
qn+1, q̇n+1, an+1, 	I, and 	II are found as the solution of the fol-
lowing nonlinear system:

qn+1 = qn + hq̇n +
h2

2
��1 − 2��an + 2�an+1� +

h2

2
��1 − b�RI + bRII�

q̇n+1 = q̇n + h��1 − ��q̈n + �q̈n+1� +
h

2
�RI + RII�

0 = ��qn+1,tn+1� �11�

0 = �q�qn+1,tn+1�q̇n+1 + �t�qn+1,tn+1�

an+1 = �1 + ��f�tn+1,qn+1,q̇n+1� − �f�tn,qn,q̇n�

where b�1 /2 is a free coefficient, RIªr�tn ,qn ,	I�, and RII
ªr�tn+1 ,qn+1 ,	II�. This method is referred as HHT-ADD and is
discussed at length in Refs. �35,36� where the local and global
error analysis results are provided along with an investigation of
stability properties. In addition to displaying attractive numerical
damping controlled through the parameter �� �−0.3,0�, the
method is shown to be order 2. The major drawback of this
method is the multiplication by the inverse of the mass matrix.
Specifically, this becomes a major concern in the inexact-Newton
step when dealing with flexible body problems where, due to the
coupling in the deformation modes, the mass matrix can have
large dense blocks. The Jacobian JHHT_ADD is not provided herein;
the interested reader is referred to Ref. �36�.

The last integration method investigated, HHT-SI2, represents a
new algorithm that is analyzed theoretically in Ref. �37�. It repre-
sents a variation in the HHT-ADD algorithm that avoids multipli-
cation by the inverse of the mass matrix. As such, it is amenable
to handling mechanical systems with flexible bodies in which the
formulation relies on the floating frame of reference approach �2�.
For HHT-SI2, the Newmark integration formulas are modified
slightly by introducing a correction �h2 /2�ā:

qn+1 = qn + hq̇n +
h2

2
��1 − 2��an + 2�an+1� +

h2

2
ā �12a�

q̇n+1 = q̇n + h��1 − ��an + �an+1� �12b�

In advancing the integration from a given configuration at time tn
to tn+1, the unknowns an+1, a, �n+1, and � are found as the solu-
tions of the nonlinear system of equations:

1

1 + �
Mn+1an+1 + ��q

T� − Q�n+1 −
�

1 + �
��q

T� − Q�n = 0

Mn+1a − �T�tn+1,qn+1�� = 0
q
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1

h2��qn+1,tn+1� = 0

1

h
�q�qn+1,tn+1�q̇n+1 +

1

h
�t�qn+1,tn+1� = 0 �13�

here Mn+1ªM�tn+h�1+�� ,qn+h�1+��q̇n�. Here a and � are
he auxiliary variables local to the current time step. Introducing
he notation R=h2��q

T��q, Q=�h2��q
T�−Q�q−�hQq̇,

=h2��q
T�−Q�q, and V=h��q�q , t�q̇+�t�q , t��q, the Jacobian as-

ociated with the discretized problem assumes the expression

JHHT-SI2 = �
1

1 + �
Mn+1 + Q

1

2
F �q

T 0

− �R Mn+1 −
1

2
R 0 − �q

T

��q
1

2
�q 0 0

��q + �V 1

2
V 0 0

	
f JHHT-SI2

0 =limh→0 JHHT-SI2, then

JHHT-SI2
0 = �

1

1 + �
Mn+1 0 �q

T 0

0 Mn+1 0 − �q
T

��q
1

2
�q 0 0

��q 0 0 0

	
nd under mild assumptions �symmetric nonsingular mass matrix
nd independent set of kinematic constraints� the matrix JHHT-SI2

0

urns out to be nonsingular. This guarantees acceptable behavior at
mall values of the step size, a situation typically encountered in
enalty-based frictional contact problems. The main result regard-
ng the convergence of the new method HHT-SI2 is stated as
ollows. Suppose that the initial configuration at time t0 is such
hat

0 = M�t0,q0�a0 + �q
T�0 − Q�t0,q0,q̇0,�0�

0 = ��t0,q0�

0 = �t�t0,q0� + �q�t0,q0�q̇0

0 = �tt�t0,q0� + 2�tq�t0,q0�q̇0 + ��q�t0,q0�q̇0�qq̇0 + �q�t0,q0�a0

nd a�−a�t0+�h�=O�h�. Then the numerical approximation
qn , q̇n ,an+� ,�n� produced by the HHT-SI2 method in Eqs. �12�
nd �13� satisfies

qn − q�tn� = O�h2�

q̇n − q̇�tn� = O�h2�

an+� − a�tn + �h� = O�h2�

�n − ��tn� = O�h2�

or 0
h�hmax and tn− t0=nh�const, where hmax is suitably cho-
en. Here q�tn�, q̇�tn�, a�tn+�h�, and ��tn� denote the exact value
f the respective unknown quantities at the times indicated in
arentheses. A formal proof of this is provided in Ref. �37�.

2.1 Implementation Details. The computational flow associ-
ted with any of the six integration methods discussed can be
bstracted in the following way. A set of unknowns wn+1 is com-

uted as the solution of a nonlinear system ��wn+1�=0. In turn,

21008-4 / Vol. 4, APRIL 2009
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the position and velocity at the new configuration tn+1 are evalu-
ated based on a set of integration formulas: q̇n+1=I1�wn+1� and
qn+1=I2�wn+1�. Illustrating this abstraction for HHT-SI2, the ex-
pression of � is obtained from Eq. �13�, I1 is provided by Eq.
�12b�, and I2 is provided by Eq. �12a�. Regardless of the method
used, advancing the solution from tn to tn+1 follows a simple
recipe:

tn+1= tn+h %L1
wn+1

�0� =wn %L2
Do %L3

q̇n+1
�k� =I1�wn+1

�k� � %L4

qn+1
�k� =I2�wn+1

�k� � %L5
Evaluate Jacobian J %L6
Solve linear system J 
w�k�=��wn+1

�k� � %L7
If�
w�k���� then break %L8
Apply correction: wn+1

�k+1�=wn+1
�k� −
w�k� %L9

End do %L10
wn+1=wn+1

�k� %L11

Certain variations in this algorithm can improve its efficiency.
For instance, rather than evaluating it at each time step, the Jaco-
bian can be evaluated less frequently. While a costly proposition
in itself, each Jacobian evaluation is necessarily followed by a
factorization step, which is also costly. Note that although the
convergence test relies exclusively on the correction norm at line
L8 of the pseudocode, the test could also include the norm of
residual, i.e., the right side of the linear system in L7.

3 Numerical Experiments
The numerical algorithms NSTIFF, Newmark, HHT-I3,

NSTIFF-SI2, HHT-ADD, and HHT-SI2 were implemented in MAT-

LAB and used in conjunction with three models. Several experi-
ments were run to evaluate the algorithms’ performance and com-
pare them in relation to the order of global convergence, energy
preservation, constraint satisfaction, and efficiency. The models
considered for testing and comparison of algorithm performance
were a slider crank, a slider crank with a flexible connecting rod,
and a seven body mechanism �see, for instance, Refs. �40–42��.
The model parameters and the initial conditions used are summa-
rized below.

Slider crank. The schematic of a slider-crank model including a
spring-damper element is shown in Fig. 1. The parameters asso-
ciated with the model are m1=3 kg, L1=0.3 m, m2=0.9 kg, L2
=0.6 m, k=100 N /m, and c=5 N s /m. Both links are symmet-
ric and homogeneous, and the center of mass is at the midpoint.
The initial conditions used for simulation of motion were �1�0�
=3� /2 and �̇1�0�=0 rad /s.

Flexible slider crank. This model is similar to the rigid slider
crank shown in Fig. 1, except that the spring and damper are not
included and the connecting rod AB is flexible. The parameter

y

x

y1’ x1’

m1g
L1

θ2

L2

y2’

x2’m2g

c

k

θ1

A

B

O

Fig. 1 Slider crank
values used in this model are m1=3 kg, L1=0.3 m, m2=0.9 kg,
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2=0.6 m, cross-section area S=5.74�10−6 m2, moment of in-
rtia I=2.765�10−8 m4, and Young’s modulus E=200 GPa.
oth links are symmetric and homogeneous, and the center of
ass is at the midpoint. The initial conditions are �1�0�=3� /2

nd �̇1�0�=1 rad /s. The equations of motion are formulated using
he floating frame of reference formulation, see Ref. �2� �p. 231�.

Seven body mechanism. The model is presented in Fig. 2. For
his set of numerical experiments, the value of the damping c was
et zero. An account of the geometry of the mechanism, along
ith inertia properties and initial conditions, is provided in Ref.

40�. The mechanism moves due to a torque applied to crank 1.
ll bodies in the model are rigid.

3.1 Global Convergence Analysis. The goal of the first set of
umerical experiments is to assess how the global integration er-

Fig. 2 Seven body mechanism
Fig. 3 Convergen

ournal of Computational and Nonlinear Dynamics

ded 10 Mar 2009 to 128.255.45.180. Redistribution subject to ASM
ror decreases with the integration step size, i.e., to carry out a
convergence analysis. From an analytical perspective, theoretical
results that predict error versus step-size behavior exist for five
out of the six algorithms considered herein. Thus, NSTIFF should
display second-order behavior �43,44�, HHT-I3 has been recently
proved to be a second-order method �34�, NSTIFF-SI2 should
display second-order convergence �20�, HHT-ADD has been
proved to be a second-order method �35,36�, and HHT-SI2 should
display second-order global convergence �37�. The only algorithm
that does not have a formal convergence proof is Newmark, but
considering its track record in dealing with ODEs it is conjectured
that in conjunction with index-3 DAEs of multibody dynamics it
would display first order global convergence.

To investigate the convergence order of each numerical method
for the rigid slider crank, a reference solution was first determined
by deriving a set of second-order ODEs that govern the time evo-
lution of the system. This ODE problem is subsequently solved
using a fourth order Runge–Kutta method �see, for instance, Ref.
�7�� with a step size of h=10−6 s. The convergence behavior is
shown in Fig. 3, which displays the crank angular velocity abso-
lute error at time T=2 s obtained with each method over a set of
integration step sizes. Ideally, these slopes should be 2, except for
Newmark, which should display first order convergence and there-
fore a slope of 1. Indeed, the numerical results confirm that all
methods behave as predicted by theory. Although not presented
here, similar numerical results were reported for a very stiff
double pendulum in Ref. �45�, and they also indicate numerical
convergence results aligned with theoretical predictions.

Since the equations of motion were too involved, for the flex-
ible slider-crank model and the seven body mechanism they were
not reduced first to a set of ODEs. Rather, the reference solution
was obtained with HHT-ADD with a step size of h=10−6 s. The
flexible slider crank was simulated for 2 s and the numerical so-
lution was compared with the reference solution at the final time.
The results suggest that NSTIFF, HHT-I3, HHT-SI2, HHT-ADD,
ce, slider crank

APRIL 2009, Vol. 4 / 021008-5

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a
t
r
d
g
p
o
a
b
t

p
A

e, fl

0

Downloa
nd NSTIFF-SI2 exhibit order 2 convergence, in line with the
heoretical results established in conjunction with these algo-
ithms. Furthermore, Newmark shows global convergence of or-
er 1 for all models. The convergence orders hold both for the
eneralized coordinates and their time derivative, that is, both for
ositions and velocities. Figure 4 displays the convergence and
rder for the flexible slider crank; the results reported concern the
ngular velocity of the crank. Finally, for body 5 of the seven
ody mechanism, see Fig. 2, the convergence plots for its orien-
ation and angular velocity are displayed in Figs. 5 and 6.

3.2 Energy Preservation. The HHT method came as an im-
rovement over Newmark formulas because it preserved the
-stability and its attractive numerical damping properties while

Fig. 4 Convergenc
Fig. 5 Convergen
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achieving second-order accuracy. In this method, high-frequency
oscillations that are not of interest, as well as parasitic high-
frequency oscillations that are a by-product of the finite element
discretization, are damped out through the parameter �. The
choice of � is based on the desired level of damping: The more
negative the value of �, the more damping is induced in the nu-
merical solution. Note that the choice �=0 leads to the trapezoidal
method with no numerical damping. The effect of this damping
can be seen from energy preservation plots shown in Figs. 7 and
8. These energy plots are for the slider-crank model from which
the translational damper was removed. The system is conservative
and, for the particular reference system employed, the total energy
should be constant and equal to zero.

exible slider crank
ce, orientation

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o
q
i
w
t
d
�

I
=
r
d
a
f
w

J

Downloa
For �=−0.3, the numerical damping-induced dissipation is one
rder of magnitude more pronounced than the �=−0.05 case,
ualitatively in line with expectations. Even more relevant is an
nvestigation of how the numerical energy dissipation changes
ith the step size. The results in Fig. 8 indicate a highly oscilla-

ory pattern. To capture the degree to which a numerical scheme
issipates energy, an average energy dissipation over an interval
0 ,T� is computed as

��T� =
1

T
0

T

�Etot�t��dt �14�

f no numerical dissipation was present in the system then ��T�
0, ∀T�0. On a log-log scale, Fig. 9 shows this quantity for the

igid slider-crank model with no physical damping, while Fig. 10
isplays the same quantity for the flexible slider crank. This aver-
ge energy error for Newmark converges to zero like O�h�, while
or all the other methods, it converges to zero like O�h2�. In other
ords, the convergence is order O�hq�, where q is the order of the

Fig. 6 Convergen
Fig. 7 Energy dissipation at �=−0.3
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method. Although this does not serve as a formal proof, this at-
tribute deserves further investigation, since ��T� is an average
quantity that captures the energy drift over the entire simulation.
Such a result could be relevant, for instance, in the context of
molecular dynamics �MD� simulation, where the entire classes of
integrators are disqualified if they do not preserve energy. How-
ever, with values in the femtosecond range, the step size for MD
simulations might be so small that particularly HHT, through its
variable-damping attribute, might, in fact, be a viable numerical
integration formula. This aspect is further investigated in Ref.
�46�.

3.3 Kinematic Constraint Drift. The rationale behind stabi-
lizing the numerical solution of the index-3 DAE of multibody
dynamics using the velocity kinematic constraint equations is to
prevent drift in satisfying this set of algebraic constraints. Three of
the six methods analyzed in this study, namely, HHT-ADD, HHT-
SI2, and NSTIFF-SI2, enforce these equations. As such, no veloc-
ity constraint drift is expected in the numerical solution. This is

, angular velocity
ce
Fig. 8 Energy dissipation at �=−0.05
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onfirmed by the plots in Figs. 11 and 12, which display the
elocity constraint violation in the X direction against the velocity
onstraint violation in the Y direction for the rigid slider-crank
echanism for the pin joint between the crank and ground. Data
ere plotted at each time step and, as anticipated, confirm that the
elocity kinematic constraint equations are satisfied within ma-
hine precision. A qualitatively identical plot for NSTIFF-SI2 is
rovided in Ref. �47�.

For Newmark, NSTIFF, and HHT-I3, Figs. 13–15 report the
ame information for the rigid slider crank with no damping ob-
ained during a 10 s simulation with a step size h=2−10 s. One
emarkable property is that Newmark, HHT-I3, and NSTIFF dis-
lay the same error behavior. Moreover, as the step size decreases,
he box that bounds the plot shrinks but the shape of the curves
emains the same for all three integration methods. The cause of
his behavior remains to be investigated but these results suggest
hat this limit cycle behavior is a characteristic of the direct
ndex-3 methodology; i.e., neglecting velocity kinematic con-

Fig. 9 Dissipation, slider crank
Fig. 10 Dissipation, fl
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straint equations, rather than that of the algorithm used for the
numerical solution. For now, it should be pointed out that numeri-
cal experiments indicate that the error in satisfying these con-
straints converges like O�hq�, where q is the order of the method.
A more formal investigation of these observations remains to be
done. Qualitatively identical plots are provided for the flexible
slider crank in Ref. �47�.

3.4 Runtime Comparison. The six methods investigated in
this work were used to run simulations of the time evolution of the
three previously discussed models. Additionally, for comparison
purposes and drawing on the results reported in Ref. �45�, a
double pendulum mechanism is also considered. The goal is to
compare the amount of work per time step required to produce an
approximation of the solution. In this undertaking, the integration
step size was identical for all algorithms, although it was different
for different models. Also, specific to each model was the simu-
lation end time. In order to allow for a unified perspective on the
efficiency issue, the CPU times required to complete the analyses

Fig. 11 Velocity drift, HHT-ADD
exible slider crank
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ere reported in Fig. 16 after being normalized to the time it took
he HHT-I3 method to finish the simulation. In other words, for
ach of the four models, the HHT-I3 provides the reference. The
esults in Fig. 16 suggest that having the kinematic velocity con-
traint equations enforced usually leads to an approximate simu-
ation slowdown of 30%, unless the model is heavily constrained,
s is the case with the seven body mechanism. For the seven body
echanism, the number of second-order differential equations
as 21 and the number of constraints 20, in which case relying on

he velocity kinematic constraint equations for stabilization pur-
oses slows down the overall simulation due to a rather significant
ncrease in the dimension of the problem: from 41 nonlinear
ifferential-algebraic equations for HHT-I3 to 61 for HHT-SI2 and
STIFF-SI2. Finally, as expected, the HHT_ADD is very costly

or the flexible body model given that the mass matrix ceases to
e constant. This trend gets exacerbated as the dimension of the
roblem increases, as is the case with the seven body mechanism,
ffectively making HHT_ADD an algorithm that is robust but of
imited practical interest. Note that the mass matrix associated
ith the HHT-SI2 algorithm being evaluated somewhere midstep

nd then kept constant led to improved performance when com-
ared with the NSTIFF-SI2 alternative. In other words, for large
odels, it is anticipated that the newly proposed algorithm HHT-

Fig. 12 Velocity drift, HHT-SI2
Fig. 13 Velocity drift, Newmark
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SI2 will be attractive both on grounds of efficiency and variable-
damping characteristics. It should also be pointed out that the
timing results reported herein are only qualitative as there are a
multitude of factors that ultimately dictate the efficiency of an
algorithm: memory access, step-size selection, Newton-
convergence issues, predictor, etc. The impact of these factors is

Fig. 14 Velocity drift, NSTIFF

Fig. 15 Velocity drift, HHT-I3
Fig. 16 Runtime comparison

APRIL 2009, Vol. 4 / 021008-9

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



h
t
N

4

m
b
t
d
o
c
t
a
t
a
m
d

m
i
i
g
s
s
r
v
a
r
a
s
m
a
i
I
H
o
a
a
e
a
c
s
s

A

e
n
a
w
f
m
t

R

0

Downloa
ighlighted in Ref. �33�, where it is reported that these implemen-
ation issues actually rendered HHT-I3 two times faster than
STIFF.

Conclusions
This paper investigates six low-order numerical integration for-
ulas for determining the time evolution of constrained multi-

ody systems. The motivation for this effort was twofold. First,
he vast majority of large real-life models contain high stiffness,
iscontinuities, friction, and contacts that effectively make low-
rder integration formulas the only viable alternative for numeri-
al simulation. The comparison of these commonly used integra-
ion formulas shed light on some advantages and disadvantages
ssociated with each method. Second, the comparison served as
he vehicle that introduced a new integration method, HHT-SI2,
nd placed it in the wider family of index-3 and stabilized index-2
ethods for the numerical solution of the DAEs of multibody

ynamics.
Compared with higher-order implicit formulas, the numerical
ethods investigated herein are robust and straightforward to

mplement. The algorithms discussed do not have ill-conditioning
ssues associated with small integration step sizes due to the sug-
ested scaling, are backed up �with the exception of Newmark� by
ound theoretical results, and come in two flavors: index-3 and
tabilized index-2. Based on the convergence order and timing
esults presented, for problems where accurately satisfying the
elocity kinematic constraint equations is not a priority, HHT-I3,
n algorithm extensively tested and validated on large models,
epresents a good choice. It is a second-order method that has the
bility to change the amount of numerical damping that enters the
olution process and has recently been implemented in the com-
ercial package ADAMS �48�. The NSTIFF method is the next best

lternative. However, the method is plagued by a somewhat more
ntense numerical damping that cannot be controlled like in HHT-
3. For a slower but more robust approach, one can select either
HT-SI2 or NSTIFF-SI2 methods. They are comparable in terms
f efficiency, yet HHT-SI2 has an edge due to �i� its ability to
djust the value of numerical damping introduced in the solution
nd �ii� the handling of the mass matrix, which is bound to lead to
fficiency gains for large models. Relative to the simulation times
ssociated with the straight I3 methods, preliminary results indi-
ate that satisfying both the position and velocity kinematic con-
traint equations comes at a price of about a 30% increase in
imulation time.
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