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SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS FOR CONSTRAINED
HAMILTONIAN SYSTEMS*

LAURENT JAY?

Abstract. This article deals with the numerical treatment of Hamiltonian systems with holonomic constraints.
A class of partitioned Runge—Kutta methods, consisting of the couples of s-stage Lobatto IIIA and Lobatto IIIB
methods, has been discovered to solve these problems efficiently. These methods are symplectic, preserve all un-
derlying constraints, and are superconvergent with order 2s —2. For separable Hamiltonians of the form H (g, p) =
% pT M~ p+U (g) the Rattle algorithm based on the Verlet method was up to now the only known symplectic method
preserving the constraints. In fact this method turns out to be equivalent to the 2-stage Lobatto IIIA-IIIB method of
order 2. Numerical examples have been performed which illustrate the theoretical results.

Key words. differential-algebraic equations, Hamiltonian systems, index 3, Lobatto methods, mechanical sys-
tems, partitioned Runge-Kutta methods, symplecticity
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1. Introduction. Hamiltonian problems arise in a lot of applications where dissipative
forces can be neglected, such as mechanical systems, astronomy, electrodynamics, molecular
dynamics, plasma physics, fluid dynamics, etc. The Hamiltonian system of differential equa-
tions associated with the Hamiltonian H (q, p) (a real function supposed sufficiently smooth)
is given by

(1.1) ¢=Hl(q,p), p=-H(qp)

where g = (¢, ..., ¢")T € R" are the generalized coordinates and p= (p', ..., p")T €R"
the generalized momenta. The flow generated in the phase space R” xR" of (g, p) by these
equations (1.1) is known to be symplectic, i.e., the differential 2-form

n
(1.2) w? = Z dq* A dp* is preserved,
k=1

implying that all differential 2d-forms

(1.3) NS for d=1,...,n
N e’

d times

are also conserved (d = n corresponds to the 2n-form volume). Another specific feature of
such systems is that the Hamiltonian along a solution (g (¢), p(¢)) to (1.1) passing through
(g0, po) at tp remains invariant, i.e.,

(1.4) H(q@), p(t)) = H(qo, po)  forallz.

Hamiltonian systems also possess numerous other specific properties (see [Ar89, Part I1I] and
[MK92]). Unfortunately, most numerical methods applied to (1.1) do not maintain the above
two properties (1.2) and (1.4). Various authors ([SS88], [La88], [Sur89], [Y90], [Sun92],
[Sun93], [ASS93] among others) have identified or constructed symplectic schemes, i.e.,
methods maintaining (1.2). For an overview on symplectic integrators we refer to [SS92]
and [HNW93, §I1.16].
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In this article we consider Hamiltonian systems with holonomic constraints. Such prob-
lems form a particular class of semi-explicit differential-algebraic equations
(DAEs) of index 3. We present a very efficient class of partitioned Runge-Kutta (PRK)
methods for the solution of these problems. It consists of the couples of s-stage Lobatto IITA
and Lobatto IIIB methods. These methods combine three attractive properties:

—symplecticity, as seen with the RK methods Gauss and Lobatto IIIS (see [Sun92],
[Sun93], and [Cha90]);

—the fact that the numerical solution can be naturally projected onto the manifolds where
the exact solution lies (see [AP91], [AP92], [HWO91, §V1.7], [J94], and [LS94] for similar
ideas), without loss of symplecticity;

—superconvergence, a property shared by stiffly accurate RK methods such as Radau ITA
and Lobatto IIIC (see [HLR89, pp. 18-19, 86], [J93b], [HI93], [J94], and [J95]).

The importance of symplecticity in numerical integration, especially for long-time compu-
tations, is nowadays underlined by a sort of “backward analysis” by interpreting the numerical
solution as the exact solution of a nearby perturbed Hamiltonian system (see [SS92]). In
[H94] Hairer recently proved the general result that a// symplectic methods whose numerical
solution is a (partitioned) P-series possess this property. An extension of this result to Hamil-
tonian systems with holonomic constraints and the numerical methods treated in this article
is likely. This fact is corroborated by the numerical observations of §5.

A typical example of a constrained Hamiltonian system is given by the pendulum equa-
tions. Using the cartesian coordinates ¢ = (x, z)7 for the description of the position of the
pendulum, the holonomic constraint on the length £ of the rod of the pendulum is

(1.5) 0=+/x2+72—1¢.
The kinetic energy 7' and the potential energy U of the system are given, respectively, by
(1.6) T(@G) = E(x2+z2), U(q) = mgz

where g is the gravitational constant. The Lagrangian of the system is L(g, ¢)=T(¢)—U(q)
and the generalized momenta are p=(py, p,)’ = Lg (g, q) leading to

1.7 Px = mX, p, =mz.

The Hamiltonian H =T +U can be expressed by

_ Lo, o
(1.8) H(q, p) = ﬁ(px+pz)+mgz,

and the Hamilton equations of motion become

. Dx . ) 2 . X .
1.9 ===, == =
(1.9) * m ¢ m Px £ £
One differentiation of (1.5) implies that
(1.10) 0 =xpx+zp,,

and another one permits us to obtain

1
(5 2 2)-mez)

| =

(1.11) A=
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Thus the differential-algebraic system (1.5) with (1.9) is of differential index 3 (see [BCP89,
Chap. 2], [HLR89, p. 1], and [HW91, §VI.5] for various index definitions).

This paper is organized in five sections. In §2 we give some basic definitions and results
related to symplectic PRK methods. Section 3 deals with the application of PRK methods to
Hamiltonian systems with holonomic constraints. Convergence results for a specific class of
PRK methods, comprising the symplectic Lobatto IIIA-IIIB schemes, are then stated in §4.
Finally, §5 includes some numerical experiments illustrating the theoretical results.

2. Symplectic PRK methods for Hamiltonian systems. Hamiltonian systems (1.1) are
intrinsically split into two parts; therefore the use of PRK methods is very natural.

DEFINITION 2.1. One step of an s-stage PRK method applied to (1.1), with stepsize h and
initial values (qq, po) at ty reads

(2.1a) @ =qo+h ) biki , p1=pot+h Y bit;

i=1 i=1 "
where
(2.1b) ki =H) (Qi, P), ¢ =—H[(Qi, P),

and the internal stages are given by

s s
(2.1c) Qi = qo+h ) _aijk; , Pi=po+h ) Gt .
j=1 j=1

From now on we use the notation (A, b, ¢) for the RK coefficients where A := (a;; )f, =10
b:=(bi,...,b)T, c:=(ci,...,cs)T, and similarly for (A, b, ) (the coefficients ¢; and ;
enter into the definition of PRK methods for nonautonomous problems).

For a PRK method the symplecticity condition (1.2) is expressed by

2.2) > dgf ndpt =" dgk ndpt,

n
k=1 k=1

and symplectic PRK schemes can be characterized as follows:
THEOREM 2.1 [H94]. If the coefficients of an s-stage PRK method (2.1) satisfy

(2.3a) bi=E for i=1,...,s,
(2.3b) biaj+bjaji—bb; =0  for i=1,....s, j=1,...,s,

then the PRK method is symplectic.

If the PRK method is irreducible, then the conditions (2.3) are also necessary for sym-
plecticity.

Remarks.

(1) For separable Hamiltonians H(q, p) = T (p)+ U (q), the first condition (2.3a) can
be omitted (see [ASS93]).

(2) For a proof of the sufficiency of the conditions (2.3) see [SS88], [La88], [Sur89],
and [Sun92].

(3) For irreducible PRK methods, i.e., methods without equivalent stages (see [Bu87,
§383], [H94, §41, or the definition of S-irreducibility in [HW91, p. 200]), a way of showing
the necessity of (2.3) is to extend the characterization of canonical B-series of [CSS94] to
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(partitioned) P-series (see [H94, Lemma 11]) and to apply the proof of [H94, Thm. 5]. For
separable Hamiltonians an alternative proof of the necessity of (2.3b) is given in [ASS93].
DEFINITION 2.2. The local error of a PRK method (2.1) is defined by

2.4 8qn(to) = q1—q(to+h) , dpn(to) = p1—p(to+h)

where (q(t), p(t)) is the exact solution of (1.1) passing through (qo, po) at ty.

Considering the elegant W-transformation of Hairer and Wanner (see [HW91, §IV.5]), it
is possible to construct high order symplectic PRK methods starting from known RK methods
as follows.

THEOREM 2.2 [Sun92]. Suppose that a RK method with coefficients a;j, b; # 0, and
distinct c;, satisfies the following simplifying assumptions:

s
1

B(p): bkl = - k=1,....p,
() ;lq L Jor P .

s CIF
C(g): Zaijc;"lzi— for i=1,...,s, k=1,...,q,

s b
D) : Zbicf_la;j=?’(l—c;‘) for j=1,...,s, k=1,...,r;

i=1

then the PRK method (2.1) with coeﬂicients’l;,- = b;, ¢ :=ci, and a;j := bj(1 —a;; /b;) is
symplectic and satisfies

(2.5) 8qn(to) = O™y, 8pu(to) = O(h™1)

with an order n=min(p, 2q+2, 2r+2, g+r+1).

Remarks.

(1) With the help of the W-transformation it can be shown that the RK method (A b, c)
satisfies C (r) and D(q) (see [HWI1, §IV.5] and [Sun92]) where the notation C( q), D( r)is
self-evident. .

(2) The simplifying assumptions C(1) and D(1) (which are equivalent to C(1) by the
symplecticity conditions (2.3)) ensure here that ¢; = Z;zl agijjandc;=) "} i1 a;j, respectively.
This implies some simplifications when deriving the order conditions of PRK methods ap-
plied to nonautonomous problems: in this case the order conditions reduce to those of the
autonomous case (see also [HNW93, p. 134]). An example of a RK method violating one of
these assumptions is given by the 2-stage Lobatto IIIA method, namely the trapezoidal rule,
which satisfies B(2), C(2), but not D(1). Another example consists in its dual symplectic
method, the 2-stage Lobatto IIIB method, which satisfies B(2), D(2), but not C(1).

(3) The symplecticity conditions (2.3), acting as simplifying assumptions, introduce a
reduction of the number of order conditions (see [ASS93]).

Examples of symplectic PRK methods are given in [Sun92]. In this paper we focus our
attention on PRK methods adapted to the situation where holonomic constraints are encoun-
tered. In this context the couples of s-stage Lobatto IIIA methods for (A, b, ¢) and Lobatto
IIIB methods for (A b, ¢) turn out to be of main interest. These PRK methods satisfy the
simplifying assumptions B(2s—2), C(s), D(s—2), c (s—2), and D(s) Concerning the coeffi-
cients of these methods, the welghts ¢; of Lobatto quadratures are given by c; =0, cs =1, and
the remaining ¢; fori =2, ..., s—1 are the roots of the polynomial of degree s—2 P(1 ' (2x—1)
where

wn s—2
2.6) P’ (y) = Const -

1
o=y (70
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TABLE 2.1
Coefficients of the 2-stage Lobatto IIIA-IIIB method of order 2.

0 0 0 0 1/2 0

1 1/2 1/2 1 1/2 0

I 1/2 1/2 l 1/2 1/2
TABLE 2.2

Coefficients of the 3-stage Lobatto IIIA-IIIB method of order 4.

0 0 0 0 0 16  —1/6 0
12 | 524 13 —1/24 12 | 1/6 1/3 0,
1 16  2/3 1/6 1 1/6  5/6 0
1/6  2/3 1/6 16  2/3 1/6

is a Jacobi polynomial. The coefficients b; = a,; and a;; can be computed, for example, by
the use of C(s), and the coefficients a; j» as in Theorem 2.2 or with the help of D(s). The
Butcher tableaux of the 2- and 3-stage Lobatto IIIA-IIIB methods are given in Tables 2.1 and
2.2, respectively. For separable Hamiltonians the 2-stage method can be applied explicitly.
The coefficients of the 4-stage Lobatto IIIA-IIIB method can be found in [HW91, p. 80]. We
list also below the weights ¢; of the 11-stage Lobatto method of order 20:

1 1 1 1 1
¢ =0, Cz=§—52, C3=§—53, C4=5—54, Cs=§—35, C6 =5,

1 1 1 1
=—+55, C=—+54, C=§+33, 010=§+52, cu=1,

%,/—( u+ta))+as, ,/—( u—ap))+as,
1 /1
2.7 8 = §(u+az)+aa, —(u az)+as ,

9
a; =Av—4a, a =.v—48, a3=i—9—, a=d—~d,, B=di+d,,

1080 96912

1 1
=Sletv), d=sV@tvi—deo, e=-, o=orn,
=3t d=gvlatvi=da e =-gm. @ = s

l\)l>—

\SIRC
l\.)l)-‘

32 1 3 720 13
M=\/;9 U=§§-§- Cos (g arCCOS(Z>)+m’-7-, c = ‘—"—2—_

Due to their symmetry, Lobatto schemes are often used for the solution of boundary value
problems (see [A85] and [AMRS88]). The analysis of the application of Lobatto IIIA methods
to semi-explicit index-2 DAEs in Hessenberg form is given in [J93a].
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3. Hamiltonian systems with holonomic constraints and PRK methods. Mechanical
systems where dissipative forces can be neglected can be expressed as Hamiltonian systems.
Their Hamiltonian is of the form H = T + U where T represents the kinetic energy and U
the potential energy. Usually the equations of motion are not written with a Hamiltonian
formalism, but in an Euler-Lagrange formulation (see [HW91, §§VL5 and VI.9]). Our aim
here is to study Hamiltonian systems with m < n holonomic constraints g'(g) = 0 (i =
1,...,m) (see [Cho92, Chap. 2] or [Ar89, §17]). A Lagrange-type variational principle
exists if the constraints are holonomic (see [Cho92, §4.2.2]). Applying this principle to
H(q, p)=H(q, p)+1" g(q), we arrive at

(B.labe)  §=H,(@4.p), p=—H(q p)-G @, 0=2g(q)

where G(q) := g4(q). The variables A’ (i =1, ..., m) are the Lagrange multipliers. Differ-
entiating (3.1c) twice, as in the example given in the Introduction, we obtain the following
additional constraints (omitting the obvious function arguments): g

(3.1de) 0=GH], 0=G,(H!,H)+GH} H —GH, H —GH} G"A .
Initial values for the problem (3.1a,b,c) have to be consistent, i.e., they must satisfy (3.1c,d,e).
From now on we suppose that G is of full row rank m and that we have an optical Hamiltonian
system (see [MK92, p. 140]), meaning that H,, is a strictly positive definite matrix. From
these hypotheses it follows that the matrix GH} G is invertible; hence we get from (3.1e)

-1
(3.1f) Mg, p)=(GH},G")" (G4(H],H])+GH, H —GH! H])(q,p),

and thus the original system (3.1a,b,c) is of differential index 3. This explicit relation (3.1f) for
A introduced in (3.1b) defines the standard underlying ODE (3.1a,b) which is not a Hamiltonian
system in general. All equations (3.1a,b,c,d,e) form an overdetermined system of differential-
algebraic equations (ODAEys) (see [FL89] and [PP92]) of index 1. A standard analysis shows
that on the 2(n —m)-dimensional manifold

(3.2) V={(g p)eR"xR"|0=¢(9), 0=G(@H, (q,p)} ,

the flow generated by the equations (3.1) is symplectic (see also [HNW93, §1.14]).
Disregarding the property (1.4), the ideal properties for a numerical method would be to
be symplectic, to have a numerical solution ‘remaining on the manifold V, and to have a high
order of convergence occuring with minimal computational work. The Gauss methods applied
to (3.1a,b,c) are symplectic, but they have the disadvantages that the numerical solution does
not satisfy the constraints (3.1c,d,e) and that a poor (or even no) convergence occurs (see
[HJ93]). Even if projections are effected they are not superconvergent, and the symplecticity
property is destroyed. To our knowledge the Rattle algorithm, a method of order 2 due
to Andersen (see [An83]) and based on the Verlet method, is the only known symplectic
method preserving the constraints which has been proposed in the literature for separable
Hamiltonians of the form H(q, p) = % p"M~1p+U(q) with M a constant positive definite
matrix (see [LS94] and [SBO92]). For such Hamiltonians two different approaches have also
been derived in [LR94]. The first one is the reduction of (3.1a,b,c) to a Hamiltonian state-space
form via a parametrization of the constraints (3.1c). The second one is the construction of
an unconstrained Hamiltonian system which preserves the constraint manifold V and whose
flow reduces to the flow of (3.1) along this manifold. We also mention the independent and
simultaneous investigation by Reich on constrained Hamiltonian systems in [R93] where high
order symplectic methods preserving the constraints are constructed by composition of a first
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order method (see also [Y90]). For short-time computations, a nonsymplectic alternative is to
integrate the standard underlying ODE and to frequently project the numerical solution onto
the manifolds (3.1c,d,e) (see also [AP93]).

Here we turn our interest to PRK methods.

DEFINITION 3.1. The application of an s-stage PRK method to the equations (3.1a,b,c)
reads

(3.32) g1 =qo+hy_bik;, pi=rpothy bit;
i=1 i=1
where
(3.3b) ki =H, (Qi, P), 4 =—H](Qi, P)—GT(Q) A, 0=2g(Q),

and the internal stages are given by

(3.3¢) Qi =qo+h Y _aik; , Pi=pot+h ) Gt .
j=1 j=1

Remark. The existence and uniqueness of a solution to these equations is not guaranteed
without some assumptions on the coefficients.

Let us start by supposing that we have a locally unique solution to this system (3.3).
Our aim now is to check the symplecticity condition (2.2) for PRK methods with coefficients
satisfying (2.3). It is no surprise that we have the following result.

THEOREM 3.1. If the coefficients of the PRK method (3.3) satisfy (2.3), and if (q1, p1)
are uniquely determined, then the numerical flow (qo, po) = (41, p1) is symplectic.

Proof. This proof is inspired by the calculations of [SS88], [SS92], and [HNW93,
Thm. I1.16.6]. We neglect the equations 0 = g(Q;) for the moment. Using (3.3a) and the
bilinearity of the wedge product “A” we compute fork=1, ..., n

5 s 5
(3.4) dgf Adpli—dgi ndpl =hy bidkf ndplth Y bidas Adei+h® Y bibjdk ndif .
i=1 j=1 ij=1

We then replace the differentials dgf, dpl with the help of (3.3c) and we obtain

(3.5)
dgi A dpf—dqg A dpg
= hY bidkk NdPE+RY b;d QX Adek—h? Y (biy+bia; —biby)dkf A def

= j=1

i=1 j= i,j=1

An easy calculation shows that

n n m n agl
3.6 dkE NdPF+) T dQF A detk =— —(0))dQF ndAL.
(3.6) k; AP, ;Q, ; ;gaqk(g)g, ;

An alternative way to understand this formula is as follows: if the variable A would be con-
stant then as for unconstrained Hamiltonian systems (see [HNW93, Formula 11.16.18]) the
expression on the left-hand side of (3.6) would vanish; hence only the terms involving dA!
have to be considered. From the hypotheses (2.3) and the formulas (3.5) and (3.6) we get

n n LI 1
@7 Y dgfndph=Y dgk ndpk =0 B Y Y a—jk(Q,.)de AdAL .
k=1 k=1 i=1 I1=1 k=1



PRK METHODS FOR CONSTRAINED HAMILTONIAN SYSTEMS 375

Now, by the use of g(Q;) =0, we have G(Q;)dQ; =0, i.e.,

n

ag' X
(3.8) > aqF (20401 =0,

which finally gives the desired result. a

This result is another motivation to consider the constraints (3.1c) of index 3 and not those
of reduced indices (3.1d,e) in Definition 3.1.

RK methods are special cases of PRK methods with coefficients satisfying a;; i = ajj,
b =b;,andc; =c;. In[J93b], [HI93], [J94], and [J95], the convergence behavior of collocation
and RK methods applied to semi-explicit index-3 DAEs in Hessenberg form has been analyzed
in detail, confirming the conjecture of [HLR89, p. 86]. Compared to other methods requiring
equivalent work, stiffly accurate RK methods, i.e., methods which satisfy

(39) asj = bj for j = 1, ey S,

are tuned to give highly accurate results when applied to DAEs. Unfortunately this later
assumption and the symplecticity condition b;a;; +b;a;; —b;bj =0 lead to b; =0 and g;, =0
for i satisfying b; #0. Therefore we have the following result.

THEOREM 3.2. No symplectic and stiffly accurate RK schemes exist.

This negative result is another motivation for the consideration of PRK methods. For
RK methods with an invertible RK matrix A, one can also easily show that (3.9) implies that
R(00) =0 where R is the stability function of the method, whereas symplectic schemes must
satisfy |R(o0)|=1.

For PRK methods the stiff accuracy condition (3.9) implies that ¢; = Q; and g(gq;) =
g(Qs) =0. For symplectic PRK methods (see (2.3)) satisfying b; # 0 this condition (3.9)
implies that

(3.10) @, =0 for j=1,...,s

and conversely. Consequently, we now restrict our analysis to PRK methods satisfying (3.10).
Under this assumption, A, does not influence the solution of the following nonlinear system
originating from (3.3b,c):

Qi = qo+h)_a;H)(Q;, P)),
3.11) =

s—1
P = po—hY_ G(H[(Q) P)+GT(@)A;),  0=g(Q.
j=1

However, A, enters into the definition of p; in (3.3a). It is therefore natural to use this extra
freedom by choosing A such that (g;, p;) satisfies (3.1d), i.e., p; and A, are the solution of
(3.3d)

P1= po=h Si2 B (H (@i PO+GT (@A) by (HT (05, PO+GT (@A, ),

0=G(g)H] (1. p1) -

For constrained Hamiltonian systems this projection onto the manifold (3.1d) does not destroy
the symplecticity property shown in Theorem 3.1 (see also [LS94]). The system (3.3d) defines
implicitly p; and A, in a unique way.
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Several definitions of the numerical Lagrange multiplier A; are conceivable. One possi-
bility is to define A; such that (g;, pi1, A1) satisfies (3.1e), i.e., A; is given by

-1
(3.3e) M= (GH],G") (Gy(H!,H)+GHL H —GH] H[) (g1, p1) -

However, a very accurate value for A; may be unnecessary. This remark is important if one
wants to avoid the computation of extra derivatives such as G,. For PRK methods which
satisfy ¢, ="¢; =1 a fairly good choice is often given by A;:=A;.

Because of the singularity of the matrix A due to (3.10), the nonlinear system (3.11)
does not possess a solution in general. This remark applies specifically to the cases where the
coefficients (A, b, c) are those of the Radau ITA and Lobatto IIIC methods, and (A, b, ¢) those
of their dual symplectic methods. As it seems obviously necessary to have as many unknowns
as equations in (3.11), the only supplementary reasonable assumption to make on the PRK
coefficients is

>

(3.12) a;; =0 for j=1,...,s.

Thus we get Q1 =gy, and g(Q;) =g(qo) =0 is automatically satisfied if g¢ is consistent. For
symplectic PRK methods (see (2.3)) satisfying b; #0, this assumption implies that

(3.13) Ai=b for j=1,...,s,

and conversely. Under the assumptions (3.10) and (3.12) the local existence and /l\lniqueness
of the PRK solution (g1, p1, A1) can be shown provided 4 is sufficiently small, b; # 0, and
ApAy is invertible where

a; ... Qy aiy ... Qrs—1
(3.14) A= : . ], A = ‘
as1 ... Qs asi ... Gss-1

In this situation, for an efficient solution of the nonlinear system (3.11) (the unknowns are
02, ...,0s, P1,..., P, Ay, ..., As_1), simplified Newton iterations with the approximate
Jacobian matrix

I(s—l)n —hAO ® HpTl‘,(qu PO) o
(3.15) 0 Ln —hAy ® G (qo)
ls—l ® G(qO) o o

lead to very simple iterations (see also [HLR89, §7]). Only the decomposition of the matrix
(GH PTPGT)(qO, Po) is needed, and at each iteration s—1 independent linear systems of dimen-
sion m must be solved, this remark being important for a parallel implementation. Due to
the invertibility of AgAg and of (G HPTPGT)(qO, Do), the matrix given in (3.15) is invertible.
Another important remark is that high order methods allow the use of larger stepsizes than low
order methods. However, the higher the order of the method, the more Newton-type iterations
are necessary to preserve this order, and the larger the number s of involved internal stages is
required. Therefore a trade-off between a high order and a low number s of internal stages
must be made for an efficient implementation.

We mention that a particular class of PRK methods is given by the half-explicit methods
(HEMs) of Ostermann (see [093]), whose coefficients satisfy

a1 =aj=a,; =0, a;=b;, 21\-1’~=’b\~ for j=1,...,s,
(3.16) J AJ J sJ § J J
a,'j=a,-j=0 if lf] for i=1,...,s, j=1,...,S.
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However, no second order HEM constructed in [093] is symplectic. The exception is the
first order HEM already presented in [090] and [HLR89, p. 90], which is symplectic if the
Hamiltonian is separable.

4. Convergence results. We first introduce the following additional symplifying as-
sumptions which enter into the analysis of PRK methods:

— s s C{(

CC(Q): ajacyt = for i=1,....,s, k=2,...,0,
jleZ TALIAY] k(k—l)

~ . bl blCl blcf‘

DD(R) : ZZbC a,jaﬂ k k 1+m for I=1,...,s,

i=1 j=
k=2,...,R.

If the RK coefficients (4, b, ¢) satisfy C(g) and D(r), and (A, b, c) satisfy C(§) and D(F)
then it can be easily shown that Q >min(g, g+1) and R > min(7, r +1).
From the discussion of the preceding section we only consider here the class of PRK

methods with coefficients (A, b, c)—(Z, 3, ) satisfying the following hypotheses:

a;; =0, aj =bj, Gy =0, b =b;, ¢; =¢; for j=1,...,s
H: AoAy is invertible, b £ 0,

B(p), C(g), D(r), C@, D@, CC(Q), DD(R).

A detailed analysis of the application of such methods to semi-explicit index-3 DAEs in
Hessenberg form is given in [J94]. Here we only state the main results of [J94] related to
Hamiltonian systems with holonomic constraints. The analysis of the application of colloca-
tion and RK methods to semi-explicit index-3 DAEs in Hessenberg form is given in [HLR89,
§6], [J93b], [HI93], [J94], and [J95]. For PRK methods, slight modifications with regard to
RK methods are necessary.

THEOREM 4.1 (local error). (a) Consider the Hamiltonian system with holonomic con-
straints (3.1), consistent initial values (qo, po, ho) at to, and the PRK method (3.3) with
coefficients (A,b,c)— (A b ) satisfying the hypotheses given by H. Then we have

4.1 8qn(to) = O™y, dpu(t) = O™y, 8an(to) = O™
where
(4.2)
k =min(p,2q+2,2G+2, q+r+1,q+7+42,G+r+2,3+7+1,20, O+7, O+R) ,

£ =min(p, 2g+2,29+2, q+r+1, g+742,G+r+2,G+7+1,20—1, Q+F, O+R) .
(b) If in addition the hypotheses of Theorem 2.2 are satisfied then we obtain

k =min(p, 2g+2,2r+2,9+r+1,20, Q+q),
“4.2)
¢ =min(p, 2g+2,2r +2, g +r+1,20—1) .

The proof of part (a) which is given in [J94] is rather technical. It makes use of a
“rooted-tree-type” theory about the Taylor expansion of the exact and the numerical solutions.
The most difficult part is to estimate the local error of the p-component. Part (b) is a direct
consequence of part (a) since g =r and 7 =gq (see the first remark after Theorem 2.2). 0



378 LAURENT JAY

THEOREM 4.2 (global error). Under the same hypotheses-stated in Theorem 4.1 we have
for t,—toy=nh < Const
4.3) Qn_q(tn) = O(hz) ) pn_p(tn) = O(hz) s A—A(t) = O(hz)»

where £ is the value given in (4.2)-(4.2").
Remark. This theorem remains valid in the case of variable stepsizes with # =max; ;.
The proof which is given in [J94] is similar to those of [HLR89, Thm. 6.4] and [J95,
Thm. 6.1]. It makes use of the following recursion between two neighboring PRK solutions,

(Pq)n+1Aqn+1 = (Pq)nAqn'l' (@) (h”(Pq)n Aqn” +h"(Pp)nApn”) ,
(Pp)n+1Apn+1 = (Pp)nApn+ o (h”(Pq)nAqn”+h”(Pp)nApn ”) s

where P, and P, are projectors defined by

4.4)

S:= GT(GHPTPGT)_IG ,
0, :=HPTPS, P=1-0,, 0, :=SHI£,, P,=1-0,. ]

The couples of s- stage Lobatto IITA-IIIB methods (see §2) satisfy the simplifying as-
sumptions C(s), D(s— 2) C(s 2), and D(s) Hence CC(s 1) and DD(s 1) must hold. In
fact they also satisfy C c (s) and DD(s), and this is the subject of the following lemma.

LEMMA 4.3. Suppose that aij = 0 and a;; = b; hold for j = 1,...,s, and that the
hypotheses of Theorem 2.2 are fulfilled with p =2s — 2 g=s—1,andr=s5s—-2. Then C c (s)
and DD(s) are satisfied.

Proof of C c (s). Because of Q >s—1 it is sufficient to show that the coefficients

4.6) ,._ZZa,jajkck — scil)

Jj=1 k=

4.5)

vanish fori=1, ..., s. From a;; =0 and ¢; =0 we have §; =0. Using a;; =b; and ¢, =1 we
get

IEIOR Y - 1
bjayct— = be(1—cp)es ™2 —
ZZ SRk s(s—1) kZ=1: k(1=ce s(s—1)

B(s) 1 1 1

s—1 s s(s—1) -

We will next show that the sums

(4.8) Sni= Y bl
i=1

4.7

vanish form =1, ..., s—2. This will give the desired result §; =0 fori = 2,...,s—1. By
the symplecticity condition a;; =b; (1 —Zz},- /b;) we get S, =A,, — B,, —C,, where

s S S
4.9) Ap =) bict™' YN bianc?,
i=1 k=1 j=1

s s s

(4.10) Bu=Y by @uc™ "y e 2,

j=1 i=1 k=1



PRK METHODS FOR CONSTRAINED HAMILTONIAN SYSTEMS 379

1 5
4.11 Cn= bicmtsTL,
(4.11) "= 62D ; iC;

Each term can be computed separately:

o~ s

D(1) s—2 B 1 1 1 1
412) A, = b;c" br(1— —_— | =,
( ) " ; i Z k(1= (s 1 s) ms(s—1)

T 1 e o2 Be=n) 1 . mly 52
4.13 B, E E b; = E br(1—
( ) m _]C ajiCy m(m+1) 2 i ( Cy )Ck

B(2s-2) 1 1 B 1 _ 1
T omm+D) \s—1 m+s)  mm+s)s—1)"

B(2s—2) 1
T (m4s)s(s—1)

From these results we easily get S,, =0.
Proof of DD(s) Because of R >s—1 it is sufficient to show that the coefficients

(4.14) Cy,

| cr
4.15 = b; P [ S N T
( ) Mk ;1; C al_]a_]k k( —1+S(S—1))
vanish for k=1, ..., s. From @, =0 (see (3.7)) and ¢, =1 we have u; =0. Using @j; = b,

(see (3.10)) and ¢; =0 we get

d 1
(4.16) juy = by (Zb,c,f"——) Lo,
i=1 §
We will next show that the sums
5
4.17) Twi= Y picy™
k=1

vanish form =1, ..., s—2. This will give the desired result x =0 fork = 2,...,5s—1. By
the symplecticity condition Zijk =by(1—ay;/b;) we get T, = D, — E,,, — F,, where

S s S
(4.18) Dp=) bic]Y a; ¥ becf™",
i=1 j=1 k=1

s s 5
- aij _
(4.19) E,= Zb,.clf ZZbekCZ gy,
i=1 =1 % =1
' mT s TR T T R Ty R
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Each term can be computed separately:

R S
c() s—1 m—1 Bes) 1
D, = bic; by~ = —,
4.21) ; ! ; ms
Dis-2) 1 o
(4.22) En U= bie ) a(1=cf)
i=1 j=1

cs-1p 1 ¢ 1 1 5 -1
R S LI S
m ; ii m(m+1) ; i

B2s-2) 1 1

ms m(m+1)(m+s)’

F B(2s-2) _1__ 1 n 1
(4.23) m T s mADG-1  sG-D(m+s)
From these results we easily get 7, =0. 0

From Theorem 4.1, Theorem 4.2, and Lemma 4.3 we have the following convergence
result.

COROLLARY 4.4. For the symplectic couples of s-stage Lobatto IIIA-IIIB methods ap-
plied to the constrained Hamiltonian system (3.1) (see (3.3)) with consistent initial values
(g0, Po, Xo) at ty, the global error satisfies, for t, —ty=nh < Const,

(4.24)  gu—q(t) = Oh*™D),  pu—p(ty) = O*7),  r—A(ty) = Oh*72).

Proof.  The symplecticity of Lobatto IIIA-IIIB methods has been proved in
[Sun92]. These methods satisfy the hypotheses given by Theorem 2.2 and H with p=25—2,
qg=7r= S, r =g =s-2,and Q = R =s. The invertibility of the matrix AOZO simply follows
from CC(s). 0

For separable Hamiltonian systems the 2-stage Lobatto IIIA-IIIB method is half-explicit
and is equivalent to the Rattle algorithm proposed in [An83] (see also [LS94]).

Because of the presence of the “explicit” stage P; in (2.1) and (3.3) for symplectic PRK
methods satisfying a,; =b;, the Lobatto IIIA-IIIB methods are not appropriate when solving
stiff Hamiltonian systems, e.g., Hamiltonian systems containing a strong potential of the form

1
(4.25) ?V(q) , 0<exl.

This has been numerically observed when trying to solve the stiff spring pendulum equations
(see [Lu93] and [HLR89, pp. 10-12]) with Lobatto IIIA-IIIB methods.

For the long-time integration of Hamiltonian systems, a constant-stepsize application of
symplectic methods performs generally better than variable-stepsize algorithms if the time-
scale does not vary greatly along the solution (see [CSS92]). The reason lies in a “backward
analysis” argument (see [SS92] and [H94]). For constant stepsizes and symplectic methods, the
numerical solution can be interpreted as the exact solution of a nearby perturbed Hamiltonian
system. It is likely that this result can be extended to Hamiltonian systems with holonomic
constraints. We also point out that the construction of an embedded PRK scheme is not crucial
for a constant-stepsize implementation if an approximation to the error of the method is not
needed.
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Pz

F1G. 5.1. The phase portraits (x, px) and (z, p;) of the 3-stage Lobatto IIIA-IIIB method applied to Example
1 with stepsize h=0.12.

5. Numerical experiments. We first notice that for the solution of the nonlinear system
(3.11), the s-stage Lobatto IITA-IIIB method requires a computational work approximately
equivalent to that arising for the (s —1)-stage RK methods Radau IIA and Gauss. Hence these
methods are comparable.

Example 1. 'We consider the motion of a particle of mass m and electric charge e, moving
on a sphere of radius R under the action of forces due to an electric field (0, O, E)T and to
a magnetic field (0, 0, B)T (see [Cho92, Problem 7.16]). We use the cartesian coordinates
g =(x,y,z)T for the description of the position of the particle. The holonomic constraint is
expressed by

S 0=+x>4+y*+7>—R.
Denoting the generalized momenta by p = (px, py, p.)T, the Hamiltonian of the system is

given by

1
(5.2) H(g,p) = ﬁ((px +mwy)2+(py—mwx)2+pf)—eEz

where w = eB/(2mc) and c is the speed of light. This is an example of a nonseparable
Hamiltonian.

We have applied 5000 steps of the 3-stage Lobatto IIIA-IIIB method of order 4 with
stepsize h=0.12,

(5.3) m=1, w=1 R=1 eE=1,

and consistent initial values
5.4) x(0) =0.2, y(0) = 0.2, z(0) = +/0.92,
px(0) =1, py(0) = -1, p:(0) =0.

We have plotted in Fig. 5.1 the phase portraits (x, py) and (z, p;).
In Fig. 5.2 we have drawn the first 500 steps of the numerical Hamiltonian, whose value
for the exact solution is H = 1.22—+/0.92~0.4808336955. The remaining 4500 steps show
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FIG. 5.2. The numerical Hamiltonian of the 3-stage Lobatto IITA-IIIB method applied to Example 1 with stepsize
h=0.12.

Pz

FIG. 5.3. The phase portraits (x, px) and (z, p;) of the 2-stage Radau IIA method applied to Example 1 with
stepsize h=0.12.
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FIG. 5.4. The numerical Hamiltonian of the 2-stage Radau IIA method applied to Example 1 with stepsize h=0.12.

the same periodic behavior. If the scale of Fig. 5.4 would be used here, then the numerical
Hamiltonian would appear nearly equal to the exact value.

As a comparison we have applied the 2-stage Radau ITA method with the same stepsize
% =0.12. The numerical results are given in Figs. 5.3 and 5.4.

Since the numerical solution of the Radau ITA method does not satisfy all underlying
constraints, we have also applied this method with projections onto these constraints after
every step (see [AP91], [J94], and [J95] for similar ideas). Although the theoretical order
of convergence is improved compared to the unprojected method, the numerical results did
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not exhibit any visible difference with regards to Figs. 5.3 and 5.4. For that reason the
corresponding figures are not plotted.

We observe that for the Lobatto IIIA-IIIB method the numerical Hamiltonian remains
in tolerable bounds, but it drifts away from the exact value (roughly linearly with time) for
the unprojected and projected Radau ITA methods. This is a demonstration of the different
behaviors of symplectic and nonsymplectic integrators.

Example 2. The double pendulum. We use the cartesian coordinates g; = (x1, )7,
g2 = (x2, 22)7 for the description of the position of each pendulum. The two holonomic
constraints on the lengths £; and ¢, of the two pendula are

(5.5) 0= /xl+z2—t1, 0=V (o—x)2+(z—-2)?t .

Denoting the generalized momenta by p; =(px,, Pz, )T and DP2=(Px,, Pz:)T, the Hamiltonian
of the system is given by

1 2 2 1 2 2
(5.6) H(g,p) = 2_m—1(p"1 +pi)+ ?_—m—z—(px2 +p;)+migz+magz,

and is separable.
We have applied 5000 steps of the 3-stage Lobatto IIIA-IIIB method of order 4 with

stepsize 1 =0.12,
(57) m1=1=m2, £1=1=£2, g=1,

and consistent initial values

x1(0) = 0.5, 21(0) = —v/0.75, x2(0) =0, 22(0) = —24/0.75,

(5.8)

Px(0) =0, p,(0) =0, Px,(0) =0, P»(0)=0.
We have plotted in Fig. 5.5 the phase portraits (xi, px,), (22, pz,), and in Fig. 5.6 the first 500
steps of the numerical Hamiltonian whose value for the exact solution is H = —3+4/0.75 ~
—2.5980762113.

As a comparison we have applied the projected 2-stage Gauss method and the unprojected
and projected 2-stage Radau IIA methods to this problem with the same stepsize # = 0.12.
Their numerical Hamiltonian is plotted in Fig. 5.7. We point out that the unprojected 2-
stage Gauss method generally diverges when applied to Hamiltonian systems with holonomic
constraints (see [HJ93]). This has been numerically observed for this problem. Although
the unprojected Gauss methods are symplectic, the projected Gauss methods are not, and we
clearly see here that the numerical Hamiltonian drifts off the exact value. However, this drift
is less drastic here than for the unprojected Radau ITA method, which in turn is less severe
than for the projected Radau IIA method.

In Fig. 5.8, as a last experiment, the global errors at ¢ =5 of the four above-mentioned
methods have been plotted as functions of 4. Since we have used logarithmic scales, the
curves appear as straight lines of slope k whenever the leading term of the error is O(k*). This
behavior is indicated in the figures.

The order of convergence of the projected s-stage Gauss method is s and that of the
projected s-stage Radau IIA method is 25 —1 (see [J93b], [J94], and [J95]). For the unpro-
jected s-stage Radau IIA method the order of convergence is 2s—1 for the g-component, s for
the p-component, and s—1 for the A-component. The predicted orders are confirmed in Fig. 5.8,
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Pz,

>

FIG. 5.5. The phase portraits (x1, px,) and (22, pz,) of the 3-stage Lobatto IITA-IIIB method applied to Example
2 with stepsize h=0.12.
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FIG. 5.6. The numerical Hamiltonian of the 3-stage Lobatto IIIA-IIIB method applied to Example 2 with stepsize
h=0.12.
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FIiG. 5.7. The numerical Hamiltonians of the projected 2-stage Gauss method and of the unprojected and
projected 2-stage Radau 1A methods applied to Example 2 with stepsize h=0.12.

and this clearly shows the superiority of the Lobatto IIIA-IIIB schemes, also in terms of
accuracy.

Acknowledgments. I am grateful to E. Hairer for his remarks during the preparation of
this paper. I express my gratitude to G. Wanner for his comments on a preliminary version of
this article. I wish to thank S. F. Bernatchez for her careful reading of the English part of the
manuscript. Special thanks go to the unknown referees for their constructive criticisms.



PRK METHODS FOR CONSTRAINED HAMILTONIAN SYSTEMS 385

llgn —a(ta)ll llpn —p(t)ll

b—
3
3
—
=

d
151
i
1

1 i l
h 103 102 107

/ 0
10

10-15

! |
h 107 102 107}

IS o
w N
I
TP P T T TTTTTTITTITT
> & >
> [ )
FPTTTTTTTTTTITITITI

I1An = Atn)]l |H(gn,pn)—H(g(tn), p(tn))]

l ' l 130 l I l :Gnl
h IW e h 102 107 10t iR
h — [
105 105}
hZ : :
hS : h2 :
10-10}— hs 100
I -
h4 : :
~15 : 15 :
10 ~ h4 10- C

FiG. 5.8. Global errors at t =5 of four methods applied to Example 2 (projected 2-stage Gauss: 0; projected
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