
INEXACT SIMPLIFIED NEWTON ITERATIONS FOR IMPLICIT
RUNGE-KUTTA METHODS∗

LAURENT O. JAY†

SIAM J. NUMER. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 4, pp. 1369–1388

Abstract. We consider possibly stiff and implicit systems of ordinary differential equations
(ODEs). The major difficulty and computational bottleneck in the implementation of fully implicit
Runge–Kutta (IRK) methods resides in the numerical solution of the resulting systems of nonlin-
ear equations. To solve those systems we show that the use of inexact simplified Newton methods
is efficient. Linear systems of the simplified Newton method are solved approximately with a pre-
conditioned linear iterative method. Sufficient conditions ensuring local convergence of the inexact
simplified Newton method for general nonlinear equations are given. The preconditioner that we
use is based on the W-transformation of the RK coefficients and on the block-LU decomposition of
the simplified Jacobian after W-transformation. A new code based on those techniques, SPARK3, is
shown to be effective on two problems; the first one is a linear convection-diffusion problem and the
second one a reaction-diffusion problem.
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1. Introduction. In this article we consider the application of fully implicit
Runge–Kutta (IRK) methods to possibly stiff and implicit systems of ordinary dif-
ferential equations (ODEs). The main difficulty and computational bottleneck in the
implementation of IRK methods, such as those based on Gauss, Radau, or Lobatto
points [24], is generally in the numerical solution of the resulting systems of nonlinear
equations. In order to solve these systems efficiently we suggest the use of inexact
simplified Newton methods, more precisely of simplified Newton-iterative methods.
Linear systems of the simplified Newton method are solved approximately with a pre-
conditioned linear iterative method, such as preconditioned versions of Richardson or
GMRES iterations. We give sufficient conditions ensuring local convergence of the in-
exact simplified Newton method for general nonlinear equations. The preconditioner
that we use is based on the W-transformation of the RK coefficients and on the block-
LU decomposition of the simplified Jacobian after W-transformation. For an s-stage
IRK method this requires the decomposition of s or s− 1 independent submatrices of
the same dimension as the differential system.

In section 2 the class of implicit systems of ODEs considered in this article is pre-
sented. In section 3 we define the application of IRK methods and describe briefly the
W-transformation. In section 4 we consider and analyze inexact simplified Newton
methods in a general context. In section 5 we motivate the use of inexact simplified
Newton iterations for solving the systems of nonlinear equations of IRK methods.
In section 6 we detail the approximate inverse matrix used as a preconditioner for
the iterative solution of the linear systems of the simplified Newton method. This
preconditioner is based on the W-transformation of the RK coefficients. In section 7
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we present two preconditioned linear iterative methods used for the solution to these
linear systems; they are based on Richardson and GMRES iterations. A new code
based on the aforementioned techniques, SPARK3, is presented in section 8. In sec-
tion 9, we show that the code SPARK3 is effective on two problems; the first one is a
linear convection-diffusion problem and the second one a reaction-diffusion problem.

2. The implicit system of ODEs. We consider a possibly stiff and implicit
n-dimensional system of ODEs with a prescribed initial value

d

dt
a(t, y) = f(t, y), y(t0) = y0,(1)

where y = (y1, . . . , yn)T ∈ Rn. We assume that

ay(t, y) :=
∂

∂y
a(t, y) is invertible(2)

in a neighborhood of the solution. By differentiating the left-hand side of (1) we get

ay(t, y)
d

dt
y = f(t, y)− at(t, y),(3)

where at(t, y) :=
∂
∂ta(t, y). Hence, the assumption (2) implies that the above implicit

system of ODEs (1) can be expressed as an explicit system of ODEs

d

dt
y = ay(t, y)

−1 (f(t, y)− at(t, y)) .(4)

From a mathematical point of view the above formulations are equivalent. However,
from a computational point of view they are not. The formulations (3) and (4)
involve the terms at(t, y) and ay(t, y), and (4) also involves the inverse ay(t, y)

−1. In
this article we will consider IRK methods directly applied to (1). The expressions
ay(t, y), at(t, y), and ay(t, y)

−1 are thus not needed. When a(t, y) ≡ y we obtain
the usual system of ODEs d

dty = f(t, y). It is assumed that the implicit system of
ODEs (1) presents some stiffness, so that it behooves us to consider the application
of implicit methods, such as IRK methods.

3. IRK methods and the W-transformation. The application of IRK meth-
ods to the implicit system of ODEs (1) is as follows.

Definition 3.1. One step of an s-stage IRK method applied to (1) with initial
values y0 at t0 and stepsize h reads

a(t0 + cih, Yi)− a(t0, y0)− h

s∑
j=1

aijf(t0 + cjh, Yj) = 0 for i = 1, . . . , s,(5a)

a(t0 + h, y1)− a(t0, y0)− h

s∑
i=1

bif(t0 + cih, Yi) = 0.(5b)

The RK coefficients are given by the weight vector b = (b1, . . . , bs)
T , the node

vector c = (c1, . . . , cs)
T , and the RK coefficient matrix A = (aij)i,j=1,...,s. The equa-

tions (5a) define a nonlinear system of dimension s · n to be solved for the s internal
stages Yi for i = 1, . . . , s. The numerical approximation at t0+ h is then given by the
solution y1 of the n-dimensional implicit system (5b). When the IRK method is stiffly
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accurate, i.e., when asi = bi for i = 1, . . . , s, there is no need to solve the nonlinear
system for y1 since this value is directly given by y1 = Ys. It will be assumed hereafter
that the number s of stages satisfies s ≥ 2.

One way to construct IRK methods is through the W-transformation of the RK
coefficient matrices pioneered by Hairer and Wanner [22, 23]. Up until now this W-
transformation has been used mostly for this aim and for other theoretical purposes
such as the stability analysis of IRK methods, but to our knowledge it has never been
used for any practical purpose. This article is an extension of a preliminary article by
Jay and Braconnier [29] which introduced the W-transformation as a practical tool
for the implementation of IRK methods. The W-transformation of the RK matrix A
is defined by

X :=WTBAW,(6)

where B := diag(b1, . . . , bs) and the coefficients of the matrix W are given by wij =
Pj−1(ci) where Pk(x), the kth shifted Legendre polynomial, is given by

Pk(x) =

√
2k + 1

k!
· dk

dxk

(
xk(x− 1)k

)
=

√
2k + 1

k∑
j=0

(−1)j+k

(
k
j

)(
j + k

j

)
xj .

For more details about the W-transformation we refer to [24, section IV.5] and [7].
Hereafter it will be assumed for the following matrices that

X :=WTBAW is tridiagonal, D :=WTBW is diagonal and regular,

two conditions which are satisfied for most IRK methods of interest, such as Gauss,
Radau IA & IIA, Lobatto IIIA & IIIB & IIIC & IIIC∗ & IIID [7, 24, 27]. For these
IRK methods the transformed matrix X and the matrix D are of the form

X =




1/2 −ζ1 O

ζ1 0
. . .

. . .
. . . −ζs−2

ζs−2 0 βs−1,s

O βs,s−1 βss




, D = diag(1, 1, . . . , 1, ds),(7)

where ζk = 1/
(
2
√
4k2 − 1

)
and the missing coefficients βs,s−1, βs−1,s, βss, ds are given

in Table 1. We also give in Table 1 the additional values αs of Lemma 6.1. The forms
(7) for the matrices X and D will be assumed hereafter.

4. Nonlinear equations and inexact simplified Newton iterations. In
this section we discuss inexact simplified Newton methods in a more general context
than their application to the systems of nonlinear equations of IRK methods. We
consider a system of equations

G(x) = 0,(8)

where G : Rn → Rn is a nonlinear mapping satisfying the following assumptions:
A1. There exists an x∗ ∈ Rn such that G(x∗) = 0;
A2. G is a continuously differentiable mapping in a neighborhood of x∗;
A3. G′(x∗) is invertible.
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Table 1
Values of certain coefficients for some IRK methods, σ = 2s−1

s−1
.

IRK method βs,s−1 βs−1,s βss ds αs

Gauss ζs−1 −ζs−1 0 1 1
2(2s−1)

Radau IA ζs−1 −ζs−1
1

4s−2
1 1

2s−1

Radau IIA ζs−1 −ζs−1
1

4s−2
1 1

2s−1
Lobatto IIIA ζs−1σ 0 0 σ 0
Lobatto IIIB 0 −ζs−1σ 0 σ 0
Lobatto IIIC ζs−1σ −ζs−1σ

σ
2s−2

σ 1
s−1

Lobatto IIIC∗ ζs−1σ −ζs−1σ − σ
2s−2

σ 0

Lobatto IIID ζs−1σ −ζs−1σ 0 σ 1
2s−2

4.1. The simplified Newton method. A classical algorithm to solve a system
of nonlinear equations satisfying these assumptions for a starting value x0 sufficiently
close to the locally unique zero x∗ is given by the simplified Newton method. A
sequence of iterates xk is computed as follows:

Algorithm 4.1. Simplified Newton method.
0. Set k := 0;
1. While not convergence do

Solve G′(x0)∆xk = −G(xk);
Set xk+1 := xk +∆xk;
Set k := k + 1;

End While
2. x := xk is the approximate solution.
A major difficulty of these iterations is generally to solve the linear systems of

equations with matrix G′(x0). In an inexact simplified Newton method these linear
systems are solved only approximately, e.g., by a (preconditioned) linear iterative
method and this can be called, using a standard terminology, a simplified Newton-
iterative method. We emphasize the fact that by assuming the point x0 to be suf-
ficiently close to the solution x∗, we actually suppose that the linear models of the
function G(x) given by G(xk) + G′(x0)(x − xk) are good models. In particular we
suppose that Φ(x) := x−G′(x0)

−1G(x) is locally contractive. We can actually replace
the matrix G′(x0) by an approximation A0 provided this last property is satisfied, and
the results given in this paper remain valid for such inexact approximate (or modi-
fied) simplified Newton methods. No globalization procedure can certainly be envis-
aged for inexact simplified Newton methods, in contrast to inexact Newton methods
[2, 5, 11, 12, 30, 31], since we keep the same matrix G′(x0) during all iterations. Here
we are really interested only in solving nonlinear equations for a starting value x0

sufficiently close to the solution x∗. This is justified, for example, for the solution of
the nonlinear equations of IRK methods (5) where the initial guess can be supposed
to be close enough to the solution, and if not, the system of nonlinear equations can
be modified by changing the stepsize h.

4.2. Simplified Newton iterations as fixed-point iterations. The simpli-
fied Newton method can be interpreted equivalently as a fixed-point iteration process

xk+1 := Φ(xk) where Φ(x) := x−G′(x0)
−1G(x).(9)
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From

Φ′(x) = In −G′(x0)
−1G′(x),

we have Φ′(x0) = 0. Hence, if x0 is sufficiently close to x∗, by continuity of Φ′

there exists for any given norm ‖ · ‖ a value θ with 0 ≤ θ < 1 such that Φ′(x)
satisfies ‖Φ′(x)‖ ≤ θ for the corresponding induced matrix norm in a neighborhood of
x∗ containing x0. Therefore, a direct consequence of the Taylor–Lagrange remainder
formula or simply of the integral form of the mean value theorem (the Newton–Leibniz
formula) is that Φ(x) is locally contractive. Hence, the sequence of iterates xk in (9)
satisfies

‖xk+1 − x∗‖ = ‖Φ(xk)− Φ(x∗)‖ ≤ θ‖xk − x∗‖(10)

and thus converges to the fixed-point x∗ of Φ(x), i.e., x∗ = Φ(x∗). This fixed-point x∗

is also trivially a zero of x− Φ(x) = G′(x0)
−1G(x), therefore of G(x). The sequence

of iterates xk also satisfies

‖xk+1 − xk‖ = ‖Φ(xk)− Φ(xk−1)‖ ≤ θ‖xk − xk−1‖.(11)

Hence, if the linear systems of equations of the simplified Newton method are solved
exactly, then the linear convergence factor θ can be estimated for k ≥ 1 by

θk :=
‖∆xk‖

‖∆xk−1‖ ,

or more reliably by θ̂1 := θ1 and θ̂k :=

√
θ̂k−1θk for k ≥ 2. From the inequality

‖xk+1 − x∗‖ = ‖xk+1 − xk+2 + xk+2 − xk+3 + xk+3 − . . .− x∗‖(12)

≤ (
θ + θ2 + θ3 + . . .

) ‖xk − xk+1‖ = θ

1− θ
‖∆xk‖

a natural stopping criterion for convergence of the simplified Newton iterations often
used in practice is given by

ηk‖∆xk‖ ≤ κ1 · TOL where ηk :=
θ̂k

1− θ̂k
,

TOL is an error tolerance, and κ1 is a security factor such as κ1 = 0.03.

4.3. Inexact fixed-point iterations. When the linear system of equations at
each simplified Newton step is solved only approximately, we have what we call an
inexact simplified Newton method. To motivate the use of such methods we can
make the following observation: from the inequality (10), and given xk and θ, there is
generally no need to solve for xk+1 too accurately, i.e., with an accuracy much smaller
than θ‖xk−x∗‖. This motivates a stopping criterion for the solution ∆xk of the linear
system G′(x0)∆xk = −G(xk) based on θ and ‖∆xk−1‖. An accuracy of κ2θ‖xk −x∗‖
for xk+1, hence for ∆xk, should be acceptable where κ2 is another security factor,
such as κ2 = 0.1. Thus, from (12) and (11), either of the two quantities

κ2θ
2‖∆xk−1‖, κ2

θ2

1− θ
‖∆xk−1‖,
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is a reasonable accuracy to determine xk+1, thus ∆xk. In practice we can use either
of the two approximations

κ2θ̂
2
k−1‖∆xk−1‖, κ2

θ̂2
k−1

1− θ̂k−1

‖∆xk−1‖.

Instead of the exact sequence of iterates xk we actually get another sequence of iterates
x̃k with residual errors r̃k+1 := G(x̃k)+G′(x0)∆x̃k (be wary that the usual definition
of a residual error in linear algebra is minus this quantity, but for the sake of simplicity
we prefer the previous choice), where ∆x̃k = x̃k+1 − x̃k is the corresponding sequence
of increments. This in turn leads to another sequence of estimates for the linear
convergence factor

θ̃k :=
‖∆x̃k‖

‖∆x̃k−1‖ ,

or more reliably θ̄1 := θ̃1 and θ̄k :=

√
θ̄k−1θ̃k for k ≥ 2.

We are interested in finding sufficient conditions, in terms of computable quan-
tities, on the precision to which the linear systems of equations of the simplified
Newton method should be solved, so that convergence is ensured and so that the
linear convergence factor hardly deteriorates. In a more general context we are led
to consider what we call inexact fixed-point iterations. Let θ be the contractivity
factor of a contraction Φ in a given norm ‖ · ‖, i.e., ‖Φ(x) − Φ(y)‖ ≤ θ‖x − y‖ for
0 ≤ θ < 1. Let x0 be given and consider the fixed-point iterations xk+1 := Φ(xk) for
k = 0, 1, 2, . . . . Let x̃0 := x0 and consider an approximate sequence x̃k to xk satisfying
x̃k+1 = Φ(x̃k) + δx̃k+1, where δx̃k+1 is the direct error. We call such a sequence an
inexact fixed-point sequence. We can prove the following statement.

Theorem 4.1. Consider a contraction Φ for a given norm ‖ ·‖ with contractivity
factor 0 ≤ θ < 1 and an inexact fixed-point sequence x̃k to xk. In addition assume
that the increments ∆x̃k := x̃k+1 − x̃k satisfy

‖∆x̃k+1‖ ≤ θ̃‖∆x̃k‖, k = 0, 1, 2, . . . ,

for a certain θ̃ satisfying 0 ≤ θ̃ < 1. Then if the direct errors δx̃k+1 := x̃k+1 − Φ(x̃k)
satisfy

‖δx̃1‖ ≤ α0θ̃h(θ̃)‖∆x̃0‖, ‖δx̃k+1‖ ≤ αkθ̃
2h(θ̃)‖∆x̃k−1‖, k = 1, 2, . . . ,(13)

for a certain function h(θ̃) and coefficients αk, we have

‖x̃k − xk‖ ≤ Ckθ̃
kh(θ̃)‖∆x̃0‖, k = 0, 1, 2, . . . ,(14)

where Ck :=
∑k−1

j=0 αk−1−jκ
j with κ := θ/θ̃.

Proof. For k = 0 we have ‖x̃0 − x0‖ = 0 and C0 = 0. For k = 1 the result
directly follows from the assumption (13) with C1 = α0. The proof now can be made
by induction on k. Assume the result to be true up to index k. For k+1 ≥ 2 we have

‖x̃k+1 − xk+1‖ ≤ ‖δx̃k+1‖+ ‖Φ(x̃k)− Φ(xk)‖ ≤ ‖δx̃k+1‖+ θ‖x̃k − xk‖
≤ αkθ̃

2h(θ̃)‖∆x̃k−1‖+ θCkθ̃
kh(θ̃)‖∆x̃0‖

≤ (αk + κCk)θ̃
k+1h(θ̃)‖∆x̃0‖.
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Hence Ck+1 = αk + κCk.
Remark 4.2. Note that we could replace the conditions (13) for k ≥ 1 by the

weaker conditions ‖δx̃k+1‖ ≤ αkθ̃
k+1h(θ̃)‖∆x̃0‖. However, Theorem 4.1 emphasizes

the fact that it is certainly safer and more reliable in practice to use (13) instead.
The choice of the forcing terms α0θ̃h(θ̃)‖∆x̃0‖ and αkθ̃

2h(θ̃)‖∆x̃k−1‖ in (13)
controls the convergence of the inexact fixed-point sequence similar to the forcing
terms of inexact Newton methods [13]. However, the main difference here is that
we assume the initial point x0 to be already sufficiently close to the fixed-point x∗.
Hence, we are concerned only with local convergence. The values of the coefficients
αk in (13) play an important role. We want to ensure that Ckθ̃

k → 0 when k → ∞.
This condition is satisfied, for example, by taking αk := Cµk for two constants C and
µ satisfying C ≥ 0 and 0 ≤ µ < 1. We obtain Ckθ̃

k = C((µθ̃)k − (µθ)k)/(µ− κ) if
κ �= µ or Ckθ̃

k = Ckµk−1θ̃k if κ = µ. Therefore Ckθ̃
k → 0 when k → ∞.

From the inequality ‖x̃k−x∗‖ ≤ ‖x̃k−xk‖+‖xk−x∗‖ we get from (12) and (14)
under the assumptions of Theorem 4.1

‖x̃k − x∗‖ ≤ Ckθ̃
kh(θ̃)‖∆x̃0‖+ θ

1− θ
‖∆xk−1‖ ≤ Ckθ̃

kh(θ̃)‖∆x̃0‖+ θk

1− θ
‖∆x0‖.

Though not essential, it is natural to assume θ ≤ θ̃ since otherwise this would mean
that the inexact fixed-point sequence converges faster than its exact counterpart (pro-
vided the inexact fixed-point sequence converges to the locally unique fixed-point x∗

of Φ). Defining the constant c0 := ‖∆x0‖/‖∆x̃0‖ to be discussed below, we obtain

‖x̃k − x∗‖ ≤
(
Ckh(θ̃) + c0

1

1− θ̃

)
θ̃k‖∆x̃0‖.(15)

The coefficients αk, the function h(θ̃), the constant c0, and the convergence factor θ̃
all influence the convergence speed of the inexact fixed-point iterations. It is natural
to choose the coefficients αk and the function h(θ̃) such that the two terms in brackets
in (15) are approximately of the same size to avoid undersolving and oversolving. We
can take, for example, h(θ̃) := 1/(1− θ̃) and determine αk such that Ck ≈ c0. A safer
choice for h(θ̃), especially when θ̃ is greatly overestimated, is given by h(θ̃) := 1 since
1 ≤ 1/(1 − θ̃) for all 0 ≤ θ̃ < 1. By taking αk = Cµk, if δx̃1 were available, then we
could determine the smallest valid value of α0 = C directly from (13) assuming that θ̃
is known. Unfortunately, the direct error δx̃1 = ∆x̃0−∆x0 cannot even be considered
to be available. By obtaining x̃1 = x0 + ∆x̃0 = Φ(x0) + δx̃1 sufficiently accurately,
meaning ‖δx̃1‖  θ̃h(θ̃)‖∆x̃0‖, any sufficiently positive value of α0 = C will satisfy
(13). The choice of the coefficients αk, of the function h(θ̃), and of the constant c0
should also be dictated by the ratio Couter/Cinner of the computational cost Couter

of one outer iteration (basically one function evaluation of G) over the cost Cinner

of one inner iteration (basically approximately one iteration of the preconditioned
linear iterative solver; note that this cost usually increases with the number of inner
iterations). If this ratio is high then we should limit the number of outer iterations as
much as possible by having Ck (and therefore αk), h(θ̃), c0, and θ̃ as small as possible.
In reverse, if this ratio is small, then we should limit the number of inner iterations
as much as possible; but we still should not increase the number of outer iterations
significantly, which would in turn increase the total number of inner iterations. In
both situations we should ensure θ̃ ≈ θ, and this may not hold if ∆x̃0 is not sufficiently
close to ∆x0, i.e., we should have c0 = O(1). Both conditions ‖δx̃1‖  θ̃h(θ̃)‖∆x̃0‖
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and θ̃ ≈ θ show the importance of obtaining the first inexact fixed-point iteration step
x̃1 = x0 +∆x̃0 sufficiently accurately.

The coefficients αk = Cµk influence the precision to which the inexact fixed-
point iterates x̃k are obtained. The main inconvenience of too small values for αk

is to obtain x̃k too accurately, leading to some loss of efficiency due to oversolving.
Being too accurate, however, is certainly a safer strategy than the opposite! In reverse,
being too inaccurate may lead to divergence of the inexact fixed-point iterations or
convergence to an undesired value—two situations that we surely want to avoid. A
value of C = α0 = 1/3 seems reasonable since as mentioned above we must obtain an
accurate value for x̃1 = x0 +∆x̃0. A practical and reasonable value for µ is given by
µ = 2/3. This implies that Ck ≤ 3C for all k ≥ 0 if κ = ν/ν̃ ≤ 1.

4.4. A posteriori contraction test. The direct error δx̃2 also cannot be con-
sidered to be available, and in the absence of an estimate for θ̃, we must also obtain
x̃2 = x̃1 + ∆x̃1 sufficiently accurately to ensure that (13) for k = 1 is also satis-
fied. One possibility is to shoot for a desired value of θ̃ by having θ̃desired in (13) for
k = 1. If θ̃desired is smaller than the actual value θ̃, then we are just simply obtaining
x̃2 = x̃1 + ∆x̃1 too accurately; but once again it is a safe strategy. Taking θ̃desired

too large may hinder the potential of a more rapid convergence which might have
been obtained by taking θ̃desired smaller. In any case, the value of θ̃desired should be
carefully selected by the user and should be as small as possible to ensure that the
quantity α1θ̃

2
desiredh(θ̃desired)‖∆x̃0‖ in (13) is appropriate and such that a convergence

factor of θ̃desired would be really desired given the error tolerance that is aimed at and
a possible maximum number of outer iterations that the user is ready to take.

Convergence of a sequence x̃k to a zero of a function H can also be shown and
checked in practice under the a posteriori conditions below. In the context of inexact
fixed-point iterations discussed above we can consider, for example, H(x) := x−Φ(x)
where Φ is a contraction.

Theorem 4.3. Let K ⊂ Rn be a compact set and H : K → Rn be a continuous
mapping. Consider a sequence x̃k in K satisfying

‖x̃k+1 − x̃k‖ ≤ θ̃k‖x̃k − x̃k−1‖ for θ̃k ≤ θ̃ < 1,(16a)

‖H(x̃k+1)‖ ≤ ρ̃k‖H(x̃k)‖ for ρ̃k ≤ ρ̃ < 1.(16b)

Then the sequence x̃k converges in K to a zero x∗ of H.
Proof. By the triangle inequality and from (16a), the sequence x̃k is a Cauchy

sequence

‖x̃k+p − x̃k‖ =
∥∥∥∥∥
p−1∑
i=0

x̃k+p−i − x̃k+p−i−1

∥∥∥∥∥ ≤
p−1∑
i=0

‖x̃k+p−i − x̃k+p−i−1‖

≤
p−1∑
i=0

θ̃p−i−1 ‖x̃k+1 − x̃k‖ ≤ 1− θ̃p

1− θ̃
‖x̃k+1 − x̃k‖ ≤ θ̃k

1− θ̃
‖x̃1 − x̃0‖ .

Since this Cauchy sequence stays in the set K which is compact, hence complete, it
must converge to a certain x∗ ∈ K. From

‖H(x̃k)‖ ≤ ρ̃k‖H(x̃0)‖
with ρ̃ < 1, we get limk→∞ H(x̃k) = 0. By continuity ofH we have 0 = limk→∞ H(x̃k)
= H(limk→∞ x̃k) = H(x∗).



INEXACT SIMPLIFIED NEWTON ITERATIONS FOR IRK METHODS 1377

We have considered in Theorem 4.3 a mapping H instead of the original mapping
G in (8). When solving for a zero of G we can apply Theorem 4.3 to, for example,
H(x) :=MG(x) whereM is a regular matrix, e.g., M = G′(x0)

−1 orM = P−1 where
P is a preconditioner of G′(x0). In the former case we have H(x) = G′(x0)

−1G(x) =
x − Φ(x) with Φ given by (9) and H ′(x0) = In. If the linear systems G′(x0)∆x̃k =
−G(x̃k) are solved accurately enough without being too accurate (see Theorem 4.1),
we have x̃k+1 − x̃k ≈ −G′(x0)

−1G(x̃k) = −H(x̃k). Hence, in this situation we may
not need to check the second condition (16b) of Theorem 4.3, since when equality
holds this condition is equivalent to (16a) with ρ̃k = θ̃k and ρ̃ = θ̃. We may check
the condition (16b) using a preconditioner P of G′(x0) in H(x) := P−1G(x), but the
absence of such a convergence test is still justified provided the preconditioner P is a
good approximation to G′(x0), in the sense that P−1G′(x0) = O(1); see [4] and the
discussion below in subsection 4.5.

Theorem 4.3 resembles the contraction mapping theorem. A functionH satisfying
the above conditions is given, for example, by a contraction with fixed-point at x∗ = 0.
If H(x) = x − Φ(x) where Φ is a contraction then the zero x∗ of H is also a fixed-
point of Φ and vice versa. Therefore x∗ is locally unique. If H(x) is continuously
differentiable in a neighborhood of x∗ and if H ′(x∗) is nonsingular, then the zero x∗

is also locally unique. Note that in Theorem 4.3 we have made no assumption on the
differentiability of H and on how the sequence x̃k is generated. The first condition
(16a) ensures that the iterates x̃k converge. The second condition (16b) ensures
that these iterates converge to a zero of H(x). Hence, we have simply separated
a convergence condition for the sequence x̃k from a condition of sufficient decrease
for ‖H(x̃k)‖. Any other convergence condition for the sequence x̃k and any other
sufficient decrease condition for ‖H(x̃k)‖ can also ensure convergence to a zero of H.
Therefore, in a certain sense Theorem 4.3 is trivial. Nevertheless, it seems justified to
state and discuss it in details here since it has important practical implications and
relations to other methods when solving systems of nonlinear equations. The condition
of sufficient decrease (16b) resembles the inexact Newton condition [11, 30, 31]

‖H(x̃k) +H ′(x̃k)(x̃k+1 − x̃k)‖ ≤ ρ̃k‖H(x̃k)‖ for ρ̃k ≤ ρ̃ < 1(17)

which is nothing else but (16b) with H(x̃k+1) replaced by its first-order Taylor series
at x̃k. The close relationship between these two conditions is another justification of
the inexact Newton condition (17). However, the sufficient decrease condition (16b)
is stronger than (17) and is also more natural in the context of simplified Newton
iterations. It avoids any computation involving H ′(x̃k), but it requires evaluations of
the function H, whereas (17) can usually be checked directly in the inner iterations
of a linear iterative method at almost no cost. For simplified Newton iterations,
modifying the inexact Newton condition (17) by replacing H ′(x̃k) with H ′(x0) gives

‖H(x̃k) +H ′(x̃0)(x̃k+1 − x̃k)‖ ≤ ρ̃k‖H(x̃k)‖ for ρ̃k ≤ ρ̃ < 1.(18)

This is generally not sufficient to ensure convergence to a zero of H. Nevertheless, this
motivates a condition for the (linear) residual errors to be satisfied, to be discussed
in the following subsection.

4.5. Residual errors and convergence of inexact simplified Newton iter-
ations. Now we concentrate our discussion on the situation where H(x) := P−1G(x)
and the matrix P is a preconditioner of G′(x0). Here we do not make any assumption
on the quality of the preconditioner P . We consider an inexact simplified Newton
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method applied to G(x) = 0. A preconditioned linear iterative solver applied to
G′(x0)∆x̃k = −G(x̃k) to obtain x̃k+1 = x̃k +∆x̃k usually does not monitor directly
the error

δx̃k+1 = ∆x̃k +G′(x0)
−1G(x̃k) = G′(x0)

−1(G′(x0)∆x̃k +G(x̃k))(19)

as could be desired in order to apply Theorem 4.1, but it usually monitors the residual
errors r̃k+1 and the preconditioned residual errors

P−1r̃k+1 = P−1(G′(x0)∆x̃k +G(x̃k)) = P−1G′(x0)δx̃k+1(20)

which differ from the above expression (19) by the matrix factor P−1G′(x0). This im-
plies some slight modifications to obtain a convergence result similar to Theorem 4.1.
Note that convergence can also be checked a posteriori with the conditions (16) of
Theorem 4.3.

Analogous to (13) and (18) we suggest controlling the preconditioned residual
errors as follows:

‖P−1r̃k+1‖ ≤ αkν̃h(ν̃)‖P−1G(x̃k)‖ k = 0, 1, 2, . . . ,(21)

for a certain function h(ν̃) and coefficients αk. For P = I we obtain the condition
(18) with H = G and ρ̃k = αkν̃h(ν̃). For P ≈ G′(x0), by (20) this condition is almost
equivalent to (13) with αj replaced by αj/(1− αj ν̃h(ν̃)), ‖∆x̃k‖ ≈ ‖G(x0)

−1G(x̃k)‖,
and θ̃ ≈ ν̃. This can be seen by writing P = G(x0)(I − E) where the matrix E is a
small perturbation matrix. From (20) we get P−1r̃k+1 = (I − E)−1δx̃k+1 and from
−G′(x0)

−1G(x̃k) = ∆x̃k − δx̃k+1 we get P−1G(x̃k) = −(I − E)−1(∆x̃k − δx̃k+1).
Hence (21) can be expressed by

‖(I − E)−1δx̃k+1‖ ≤ αkν̃h(ν̃)‖(I − E)−1(∆x̃k − δx̃k+1)‖.

As mentioned in the discussion after Theorem 4.1, it is important to obtain the
first iterate x̃1 = x̃0 + ∆x̃0 sufficiently accurately, so that convergence of the outer
iterations is not hindered. Now we can state the main result of this section.

Theorem 4.4. Consider Φ(x) := x − H(x) where H(x) = G′(x0)
−1G(x) and

an inexact simplified Newton sequence x̃k for G(x) = 0 (also an inexact fixed-point
sequence for x = Φ(x)) starting at x̃0 = x0. We denote the exact sequence by xk+1 :=
Φ(xk). Assume that the increments ∆x̃k := x̃k+1 − x̃k satisfy

‖∆x̃k+1‖∗ ≤ ν̃‖∆x̃k‖∗, k = 0, 1, 2, . . . ,

in the norm ‖v‖∗ := ‖P−1G′(x0)v‖ for a certain ν̃ satisfying 0 ≤ ν̃ < 1, i.e.,

‖P−1G′(x0)∆x̃k+1‖ ≤ ν̃‖P−1G′(x0)∆x̃k‖, k = 0, 1, 2, . . . ,

where P is a preconditioner to the matrix G(x0). Assume that Φ is locally contractive
with contractivity factor 0 ≤ ν < 1 in the norm ‖ · ‖∗. Then if the preconditioned
residual errors P−1r̃k+1 = P−1(G′(x0)∆x̃k+G(x̃k)) satisfy (21) for a certain function
h, and the coefficients αk satisfy αkν̃h(ν̃) < 1, we have

‖x̃k − xk‖∗ ≤ Dkν̃
kh(ν̃)‖∆x̃0‖∗, k = 0, 1, 2, . . . ,

where Dk :=
∑k−1

j=0 βk−1−jκ
j with κ := ν/ν̃ and βj := αj/(1− αj ν̃h(ν̃)).
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Proof. For k = 0 we have ‖x̃0 −x0‖ = 0 and D0 = 0. The proof now can be made
by induction on k. Assume the result to be true up to index k. For k+1 ≥ 1 we have

‖x̃k+1 − xk+1‖∗ ≤ ‖P−1G′(x0)δx̃k+1‖+ ‖Φ(x̃k)− Φ(xk)‖∗.
As seen above we have P−1G′(x0)δx̃k+1 = P−1r̃k+1. Using the assumption (21) and
rewriting G(x̃k) = G′(x0)δx̃k+1 −G′(x0)∆x̃k we obtain

‖P−1r̃k+1‖ ≤ αkν̃h(ν̃)
(‖P−1r̃k+1‖+ ‖∆x̃k‖∗

)
.

This implies that ‖P−1r̃k+1‖ ≤ βkν̃h(ν̃)‖∆x̃k‖∗. Thus
‖x̃k+1 − xk+1‖∗ ≤ βkν̃h(ν̃)‖∆x̃k‖∗ + ν‖x̃k − xk‖∗

≤ (βk + κDk)ν̃
k+1h(ν̃)‖∆x̃0‖∗,

giving the desired result with Dk+1 = βk + κDk.
Remark 4.5.
1. Note again that the choice of the forcing coefficients αkν̃h(ν̃) in (21) controls

the convergence of the inexact simplified Newton sequence similar to the forcing coef-
ficients of inexact Newton methods [13]. However, we emphasize again that the main
difference here is that we assume the initial point x0 to be already sufficiently close to
the exact solution x∗. Hence, we are concerned only with local convergence. To have
βj = Cµj we must take αj := Cµj/(1 + Cµj ν̃h(ν̃)).

2. Note that to compute ‖∆x̃k‖∗ we need P−1G′(x0)∆x̃k which can be expressed
as

P−1G′(x0)∆x̃k = P−1r̃k+1 − P−1G(x̃k)

and the two quantities on the right-hand side are readily available (see (21)).
In the context of the solution of the nonlinear equations of IRK methods, we can

take as the first estimate of ν̃ for the computation at a given timestep of the first iterate
x̃1, the quantity ν̃prev obtained at the previous timestep. From (21) above we should
choose the precision to obtain P−1r1 to be at least α0ν̃prevh(ν̃prev)‖P−1G(x0)‖. It is
certainly safer to take an even lower value due to possible stepsize changes, etc., which
could lead to a significant difference between ν̃prev and ν̃. In the code SPARK3 (see
section 8) we take κ2α0ν̃

1.5
prev‖P−1G(x0)‖ where κ2 is a security factor, e.g., κ2 = 0.1,

except for the first timestep where we solve for x̃1 very accurately, e.g., up to the
desired tolerance TOL, since no estimate of ν̃ is generally available.

5. The nonlinear systems of IRK methods and simplified Newton itera-
tions. Various iteration schemes have been suggested to solve the system of nonlinear
equations (5a) for the s internal stages Yi [9, 10, 18, 19, 25, 34]. These methods can
be viewed as ad hoc modifications to simplified Newton iterations. They do not usu-
ally iterate at the linear algebra level. They are generally tuned to the scalar linear
Dahlquist’s test equation y′ = λy for Re(λ) ≤ 0. Unfortunately, none of them is
asymptotically exact for stiff systems, not even the internal stages Yi for this sim-
ple Dahlquist’s test equation. In contrast the inexact simplified Newton technique
presented in this article is by construction asymptotically correct.

In a standard approach the system of nonlinear equations (5a) for the s internal
stages is solved by simplified Newton iterations with approximate Jacobian matrix

L := Is ⊗M − hA⊗ J where M := ay(t0, y0), J := fy(t0, y0).(22)
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The symbol ⊗ denotes the tensor product, and Is is the identity matrix in Rs. Sim-
plified Newton iterations read

L∆Y k = −F (Y k), Y k+1 = Y k +∆Y k, k = 0, 1, 2, . . . ,

where Y := (Y T
1 , . . . , Y T

s )
T is a vector collecting the s internal stages Yi for i = 1, . . . , s

and F (Y ) corresponds to the left-hand side of (5a). Hence, simplified Newton iter-
ations require the solution of (s · n)-dimensional linear systems with the above ap-
proximate Jacobian matrix L. The direct decomposition of this matrix L is generally
inefficient when s ≥ 2. By exploiting its special structure, its decomposition cost can
be greatly improved. For example, by diagonalizing the RK coefficient matrix A

S−1AS = Λ = diag(λ1, . . . , λs)

the approximate Jacobian matrix can be transformed into a block-diagonal matrix

(S−1 ⊗ In)L(S⊗ In) = Is⊗M −hΛ⊗J =




M − λ1hJ O
. . .

O M − λshJ


 .(23)

This transformation dramatically reduces the number of operations and allows for
parallelism. Unfortunately, almost all eigenvalues of standard IRK methods arise as
conjugate complex pairs. This significantly increases the decomposition cost of the
transformed approximate Jacobian matrix (23) [24, section IV.8] and impairs paral-
lelism. Moreover, if several distinct IRK methods are used in a partitioned and/or
additive way, such as for SPARK methods [27], this diagonalization procedure cannot
be applied since the different RK matrices generally possess distinct eigenvectors. Ide-
ally, the decomposition cost of the Jacobian matrix for s-stage IRK methods should
be equivalent to at most s independent decompositions of submatrices of dimension
n.

In this article we present a different approach aimed at reducing the computa-
tional load. Instead of solving exactly the linear systems of the simplified Newton
iterations, we solve approximately and iteratively a preconditioned version of those
linear systems. The use of linear iterative methods for the solution of implicit inte-
gration methods was considered in [3, 8, 15], with an emphasis on preconditioning in
[4]. Here we use a preconditioner requiring at most s independent decompositions of
matrices of dimension n. Hence, the decomposition cost for a parallel implementation
is equivalent to the cost for the implicit Euler method. A detailed presentation of the
preconditioner is given in section 6.

6. Preconditioning the linear systems. Using the W-transformation (6) for
the approximate Jacobian matrix L in (22), at each simplified Newton iteration we
obtain a linear system

Kx = b(24)

with a block-tridiagonal matrix

K = (WTB ⊗ In)L(W ⊗ In)(25)

= D ⊗M − hX ⊗ J =




E1 F1 O
G1 E2 F2

. . .
. . .

. . .

Gs−2 Es−1 Fs−1

O Gs−1 Es


 ,
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where the n× n blocks are given by

E1 =M − 1

2
hJ, Ei =M for i = 2, . . . , s− 1, Es = dsM − βsshJ,(26a)

Fi = ζihJ for i = 1, . . . , s− 2, Fs−1 = −βs−1,shJ,(26b)

Gi = −ζihJ for i = 1, . . . , s− 2, Gs−1 = −βs,s−1hJ.(26c)

A way of solving (24) could be to use the block-LU decomposition [16, 17] of (25)

K =




In O
G1H

−1
1 In

. . .
. . .

Gs−2H
−1
s−2 In

O Gs−1H
−1
s−1 In







H1 F1 O
H2 F2

. . .
. . .

Hs−1 Fs−1

O Hs


 ,

where the blocks Hi are recursively given by

H1 = E1, Hi = Ei −Gi−1H
−1
i−1Fi−1 for i = 2, . . . , s,(27)

and are assumed to be regular. Subdividing the solution vector x, the right-hand side
b of (24), and an intermediate vector y into s n-dimensional subvectors

x =




x1

x2

...
xs−1

xs


 , b =




b1
b2
...

bs−1

bs


 , y =




y1

y2

...
ys−1

ys


 , xi, bi, yi ∈ Rn for i = 1, . . . , s,

the linear system (24) can be solved using block forward and backward substitutions

y1 = b1, yi = bi −Gi−1H
−1
i−1yi−1 for i = 2, . . . , s,

xs = H−1
s ys, xi = H−1

i (yi − Fixi+1) for i = s− 1, . . . , 1.

From (26) and (27) the blocks Hi are given by

H1 =M − 1

2
hJ, Hi =M + ζ2

i−1h
2JH−1

i−1J for i = 2, . . . , s− 1,

Hs = dsM − βsshJ − βs,s−1βs−1,sh
2JH−1

s−1J.

Since each block Hi for i ≥ 2 depends on H−1
i−1, the above recursion is not easily

parallelizable. Moreover, we should also assume that all blocks Hi are regular, a
condition which can actually be violated even if M − hJ is assumed to be invertible
for all h ≥ 0. The computational load of such a procedure would be prohibitive
anyway compared to the use of the diagonalization of the RK coefficient matrix in
(23).

We now present our central idea. Instead of solving (24) directly, we apply a
linear iterative method to the left-preconditioned linear system

P−1Kx = P−1b.(28)
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We choose the preconditioner P to be given by the approximate block-LU decompo-
sition of K based on independent approximations H̃i of Hi. We set

P :=




In O

G1H̃
−1
1 In

. . .
. . .

Gs−2H̃
−1
s−2 In

O Gs−1H̃
−1
s−1 In







H̃1 F1 O

H̃2 F2

. . .
. . .

H̃s−1 Fs−1

O H̃s




(29)
with

H̃i :=M − γihJ for i = 1, . . . , s− 1, H̃s := ds

(
M − γs

ds
hJ

)
,(30)

where

γ1 =
1

2
, γi =

ζ2
i−1

γi−1
for i = 2, . . . , s− 1, γs = βss − βs,s−1βs−1,s

γs−1
.(31)

For M = In this corresponds to the preconditioner derived in [29]. For a general
regular matrix M we find the above preconditioner by simply premultiplying the
linear system (24) onto the left by (In ⊗M−1), applying the derivation of [29] to the
matrix (In ⊗M−1)K, and then by multiplying the result onto the left by (In ⊗M).

Each H̃i can be formed and decomposed independently, making these operations
fully parallelizable. The coefficients γi have been chosen so that H̃−1

i Hi ≈ In when
(M − hJ)−1(−hJ) ≈ In for all h ≥ h0 > 0. For example, for i = 2 and if s ≥ 3 we
have

H2 =M + ζ2
1hJ

(
M − 1

2
hJ

)−1

hJ.

We see that if M is negligible compared to hJ , then we can approximate H2 by

H̃2 :=M − 2ζ2
1hJ

which is also correct when hJ = 0. In approximation theory this corresponds in a
certain sense to approximating the polynomial 1+ ζ2

1z(1− z/2)−1z by 1− 2ζ2
1z. This

process can be repeated for all matrices Hi leading to (30). If the RK coefficient
matrix is invertible, i.e., if γs �= 0, then the above preconditioner is asymptotically
exact for stiff systems, like, for example, y′ = λy when |hλ| → ∞. We note that the
preconditioner is consistent in the sense that for h = 0 we have P = K = Is ⊗ M .
Moreover, its construction is valid for any choice of the Jacobians M and J of the
differential system. Approximations to these Jacobians can also be used.

In the following result we give explicit formulas for the coefficients γi.
Lemma 6.1. The coefficients γi of (31) satisfy

γi =
1

2(2i− 1)
for i = 1, . . . , s− 1.

For i = s the coefficient αs := γs/ds of the Gauss, Radau IA & IIA, Lobatto IIIA &
IIIB & IIIC & IIIC∗ & IIID methods is as given in Table 1.
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Proof. The proof for i = 1, . . . , s − 1 can be done by induction. For i = 1 we
have γ1 = 1/2. Suppose now that the result is correct for a given index i. Since
ζ2
i = 1/

(
4(4i2 − 1)

)
we obtain

γi+1 =
ζ2
i

γi
=

2(2i− 1)

4(4i2 − 1)
=

1

2(2i+ 1)
.

For γs in (31) we can use the equality ζ2
s−1/γs−1 = 1/(2(2s− 1)) which follows directly

from above. From Table 1 we get the following results: for Gauss methods we have
γs = ζ2

s−1/γs−1 = 1/(2(2s− 1)); for Radau IA & IIA we have γs = 1/(4s− 2) +
ζ2
s−1/γs−1 = 1/(2s − 1); for Lobatto IIIA & IIIB we have γs = 0; for Lobatto IIIC
we have γs = σ

(
1/(2s− 2) + σζ2

s−1/γs−1

)
= σ/(s− 1); for Lobatto IIIC∗ we have

γs = σ(−1/(2s− 2) + σζ2
s−1/γs−1) = 0; for Lobatto IIID we have γs = σζ2

s−1/γs−1 =
σ/(2s− 2).

For most standard IRK methods, a factor of two or more in the number of oper-
ations over the classical approach of diagonalizing the RK coefficient matrix [24] can
be saved in terms of matrix decompositions by using the new preconditioning tech-
nique. Moreover, this new approach can be extended to SPARK methods [27, 29].
We see from Lemma 6.1 and from Table 1 that the coefficients γi are distinct from
each other, but that αs = γs/ds may be equal to zero or to one of the coefficients γi
for i = 1, . . . , s − 1. In this situation the decomposition of H̃s is directly available.
For k = 1, 2, 3, . . . the s = (4k − 1)-stage Lobatto IIIC methods satisfy αs = γk
(s = 3, 7, 11, . . .). For low values of s this leads to significant computational savings.
It makes a method like the 3-stage Lobatto IIIC attractive especially for large-scale
problems where direct methods are not applicable to solve the resulting linear sys-
tems. We also stress the facts that the stability properties of Lobatto IIIC methods
are strong [24] and that Lobatto-type methods can be extended naturally to integrate
differential-algebraic equations [26, 27].

7. Iterative solution of the linear systems. The linear system (24) can be
solved by a linear iterative method applied to the left-preconditioned system (28)
using the preconditioner described in section 6. The nice feature of linear iterative
methods is that it is not required to compute and to store the Jacobian matrices
explicitly. Only matrix-vector products are needed.

Starting from x0 := 0, the simplest linear iterative method is given by precondi-
tioned Richardson iterations (PRIs)

xk+1 := (I − P−1K)xk + P−1b for k = 0, 1, 2, . . . .(32)

Richardson iterations are the simplest linear first-order iterations. If ρ(I−P−1K) < 1,
where ρ denotes the spectral radius of a matrix, then in exact arithmetic PRIs converge
linearly, otherwise PRIs generally diverge [17]. Another possibility is to use linear
iterative methods based on Krylov subspaces {r0, P

−1Kr0, . . . , (P
−1K)mr0} such as

the GMRES method [33], where r0 is usually the residual error P−1b − P−1Kx0

of an initial approximation x0. Basically, the GMRES algorithm builds an iterate
xm in these Krylov subspaces minimizing the 2-norm of the residual error ‖P−1b −
P−1Ky‖2. Note that for the GMRES method, convergence is theoretically ensured
after a finite number of iterations, but its convergence speed greatly depends on the
spectral distribution of the preconditioned matrix P−1K. The more the eigenvalues of
P−1K are clustered and are close to a single point away from the origin, the better the
convergence behavior [6, 20]. We will not give details about the GMRES algorithm
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here. The interested reader can consult, for example, [14, 17, 20, 32, 33]. The use
of preconditioned linear iterative solvers for systems of differential equations was first
considered in the context of implicit multistep methods and of differential-algebraic
equations by Brown, Hindmarsh, and Petzold in [4].

8. A new code: SPARK3. We have developed a new code named SPARK3
for the numerical solution of (1). It is based on 3-stage IRK methods. The user can
choose between the family of Lobatto IIIA & IIIB & IIIC & IIIC∗ & IIID coefficients,
the Radau IIA coefficients, and the Gauss coefficients. The variable y is partitioned
into y = (uT , vT )T and a(t, y) of (1) is assumed to be of the form

a(t, y) =

(
u

e(t, y)

)
.

We have incorporated in SPARK3 the choice between two linear iterative solvers. The
first is a preconditioned version of Richardson iterations. The second makes use of
preconditioned GMRES(m) iterations with a restart parameterm which can be set by
the user. For the GMRES(m) iterations we have made slight modifications to the code
drive dgmres written for double precision arithmetic computation and developed at
CERFACS [14]. This GMRES code is implemented using reverse communication and
was therefore conveniently incorporated into SPARK3. The matrix multiplications
and the dot products are all to be done outside the code drive dgmres.

In SPARK3 we consider a scaled 2-norm, the TOL-norm, which depends on
absolute and relative error tolerances for each component, ATOLi and RTOLi, re-
spectively, to be specified by the user

‖y‖TOL :=

√√√√ 1

n

n∑
i=1

(
yi
Di

)2

, Di := ATOLi +RTOLi|yi|.(33)

This is the natural norm to be considered in a code for differential equations [21].
To estimate the discretization error, the error of the simplified Newton method, and
the error of the linear iterative solver, we use the TOL-norm with |yi| in Di (33)
replaced by max(|y0i|, |y1i|) where y0, y1 denote the numerical approximations at both
extremities of the current interval of integration.

SPARK3 makes calls to BLAS routines and depending on the user choice also
to LAPACK routines [1]. The preconditioning and matrix-vector products with the
Jacobian of the differential system can be made internally or externally. The Jaco-
bian matrix-vector products can be made as standard products using the computed
Jacobian, can be Jacobian-free by using finite differences as in [4], or can be sup-
plied by the user in any desired way. A user’s guide to SPARK3 is in preparation
[28]. The most current version of SPARK3 is available on the World Wide Web at
http://www.math.uiowa.edu/̃ ljay/SPARK3.html.

9. Numerical results. For the first numerical experiment we consider a one-
dimensional linear convection-diffusion equation

∂u

∂t
= α

∂2u

∂x2
− β

∂u

∂x
,(34)

where α ≥ 0 and β are both constant parameters. The initial condition at t = 0
is given by u(0, x) = sin(x). We consider periodic boundary conditions u(t, x) =
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Table 2
Results of SPARK3 on the convection-diffusion equations (34).

Error tolerance TOL 10−3 10−6 10−9 10−12

TOL-norm error at tend 0.59 0.51 0.19 0.58
CPU-time [s] 0.68 1.24 4.27 20.08
number of steps 9 14 46 233
number of rejected steps 0 0 0 0
number of function evaluations 33 45 141 702
number of inexact simplified Newton iterations 11 15 47 234
number of J evaluations 1 1 1 1
number of P decompositions 9 10 10 10
number of P solves 90 171 628 3025
number of linear iterations 65 130 489 2325
number of matrix-vector products 79 156 581 2791

u(t, x + 2π); hence we can restrict x to [0, 2π[. The exact solution to this problem
is given by u(t, x) = e−αt sin(x − βt) We apply the method of lines by discretizing
the spatial operators using centered differences for the diffusion term and backward
differences for the convection term (upwinding). We consider a grid of N points
xi = i/(N +1) for i = 1, . . . , N,∆x = 1/(N +1). We obtain a large system of N stiff
ODEs. The Jacobian J (22) is of the form

J =
α

(∆x)2




2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2


− β

∆x




1 −1
−1 1

. . .
. . .

−1 1
−1 1


 .

We neglect the three off-band terms in the matrix J to obtain banded matrices H̃i

(30), but we retain these three elements when computing matrix-vectors products with

matrix K (25). The matrices H̃i are decomposed by the routine DGBTRF of LAPACK
for banded matrices [1]. We consider the value N = 1000, parameters α = 1, β = 1,
time interval [t0, tend] = [0, 2], the Radau IIA coefficients, and the GMRES linear
iterative method with a restart parameter of m = 20. We have taken the absolute
and relative error tolerances for each component equal to the same error tolerance
TOL. We give some statistics obtained with the code SPARK3 on this problem in
Table 2. Since this problem is linear, approximately only one Newton iteration per
timestep was taken.

For the second experiment we consider a reaction-diffusion problem, the Brusse-
lator system in one spatial variable (see [24]),

∂u

∂t
= A+ u2v − (B + 1)u+ α

∂2u

∂x2
,

∂v

∂t
= Bu− u2v + α

∂2v

∂x2
,

where x ∈ [0, 1] and α ≥ 0, A, and B are constant parameters. The boundary
conditions for u and v are u(0, t) = 1 = u(1, t), v(0, t) = 3 = v(1, t), u(x, 0) =
1 + sin(2πx), v(x, 0) = 3. We apply the method of lines by discretizing the diffusion
terms using finite differences on a grid of N points xi = i/(N + 1) for i = 1, . . . , N ,
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Table 3
Results of SPARK3 on the Brusselator equations (35).

Error tolerance TOL 10−3 10−6 10−9 10−12

TOL-norm error at tend 0.37 0.53 0.21 0.08
CPU-time [s] 1.02 2.06 6.13 28.71
number of steps 21 43 187 1021
number of rejected steps 4 4 1 0
number of function evaluations 195 369 1128 6144
number of inexact simplified Newton iterations 65 123 376 2048
number of J evaluations 13 35 76 33
number of P decompositions 21 43 85 61
number of P solves 127 244 751 4088
number of linear iterations 62 121 375 2040
number of matrix-vector products 62 121 375 2040

Table 4
Results of SPARK3 on the Brusselator equations (35) with the exact simplified Newton method.

Error tolerance TOL 10−3 10−6 10−9 10−12

TOL-norm error at tend 0.67 0.58 0.21 0.08
number of steps 19 47 188 1020
number of rejected steps 5 6 2 0
number of function evaluations 183 387 1128 6111
number of simplified Newton iterations 59 129 376 2037

∆x = 1/(N + 1). We consider the value N = 500 and parameters A = 1, B = 3, α =
0.02. We obtain a large system of 2N = 1000 differential equations

dui

dt
= 1 + u2

i vi − 4ui +
0.02

(∆x)2
(ui−1 − 2ui + ui+1) ,(35a)

∂vi
∂t

= 3ui − u2
i vi +

0.02

(∆x)2
(vi−1 − 2vi + vi+1) ,(35b)

where u0(t) = 1 = uN+1(t), v0(t) = 3 = vN+1(t), ui(0) = 1+ sin(2πxi), and vi(0) = 3
for i = 1, . . . , N . We consider the time interval [t0, tend] = [0, 10], the Radau IIA
coefficients, and only one Richardson iteration per simplified Newton iteration. The
eigenvalues of the Jacobian matrix J have a wide spectrum. The largest negative
eigenvalue of J is close to −20000, so the system is really stiff. By ordering the
variables as y = (u1, v1, u2, v2, u3, v3, . . .), the matrices I − γhJ have a bandwidth of
2. They are decomposed using the routine DGBTRF of LAPACK for banded matrices
[1]. We have taken the absolute and relative error tolerances for each component
equal to a certain error tolerance TOL. We give some statistics obtained with the
code SPARK3 on this problem in Table 3.

In Table 4 we give some statistics for the Brusselator system using the code
SPARK3 with the same parameters, except that this time the linear systems of equa-
tions of the simplified Newton method are solved up to the machine precision. We
observe that for the same accuracy the number of simplified Newton iterations stays
quasi-identical compared to Table 3. It is a clear numerical indication of the extreme
quality of the new preconditioner.

The numerical experiments discussed in this section were made on a HP VISU-
ALIZE workstation model C240 with a 236MHz PA-RISC 8200 processor.
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10. Conclusion. We have considered the application of IRK methods to implicit
systems of ODEs. The major difficulty and computational bottleneck for an efficient
implementation of these numerical integration methods is to solve the resulting non-
linear systems of equations. For this purpose we have suggested the use of inexact
simplified Newton methods, more precisely, of simplified Newton-iterative methods.
Linear systems of the simplified Newton method are solved approximately with a pre-
conditioned linear iterative method, such as preconditioned versions of Richardson or
GMRES iterations. The preconditioner considered here is an approximate inverse of
the block-LU decomposition of the simplified Jacobian after W-transformation of the
RK coefficients. This technique has been implemented in the new code SPARK3 and
has been shown to be effective on two problems with diffusion.
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