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Abstract.

To complement the property of Q-order of convergence we introduce the notions
of Q-superorder and Q-suborder of convergence. A new definition of exact Q-order
of convergence given in this note generalizes one given by Potra. The definitions of
exact Q-superorder and exact Q-suborder of convergence are also introduced. These
concepts allow the characterization of any sequence converging with Q-order (at least) 1
by showing the existence of a unique real number q ∈ [1,+∞] such that either exact
Q-order, exact Q-superorder, or exact Q-suborder q of convergence holds.
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1 Introduction.

We consider sequences {xk}k≥0 in a metric space (X, d) converging to an
element x∗ ∈ X , i.e., satisfying

lim
k→∞

d(xk, x∗) = 0.

Certain sequences, most interestingly coming from the application of algorithms
in optimization or for the solution of systems of nonlinear equations [1, 2, 3, 4,
5, 6, 7, 8, 10], can be shown to possess the property of converging with Q-order
(at least) q ≥ 1 (the letter Q standing for the word quotient). For example, it is
well-known that the successive iterates of Newton’s method applied to a system
of nonlinear equations converge locally (at least) Q-quadratically under some
smoothness assumptions.
The purpose of this note is twofold. First, we are motivated to address some

discrepancies found in the literature related to the notion of Q-order of con-
vergence. We give here some new, unifying, and more general definitions. The
second objective of this note is to give a precise characterization of any sequence
converging with Q-order (at least) 1. We show the existence of a unique real
number q ∈ [1,+∞] such that either exact Q-order, exact Q-superorder, or exact
Q-suborder q of convergence holds.
After discussing the notion of Q-order of convergence in Section 2, we give in

Section 3 a precise definition of the concepts of Q-superorder and Q-suborder of
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convergence. Then, in Section 4 we introduce the notions of exact Q-order, exact
Q-superorder, and exact Q-suborder of convergence. The definition of exact Q-
order of convergence given here is shown to be more general than one given by
Potra in [8]. Finally, we characterize any sequence converging with Q-order (at
least) 1 by showing the existence of a unique real number q ∈ [1,+∞] such that
either exact Q-order, exact Q-superorder, or exact Q-suborder q of convergence
holds.

2 Q-order of convergence.

Let (X, d) be a metric space. For a normed space (X, ‖ · ‖) we consider the
standard distance given by d(x, y) := ‖x − y‖. The notion of Q-order of con-
vergence is concerned with the asymptotic rate of decrease of the distance of a
sequence towards its limit.

Definition 2.1. A sequence {xk}k≥0 converges to x∗ with Q-order (at least)
q ≥ 1 if there exist two constants βq ≥ 0 and Kq ≥ 0 such that for all k ≥ Kq

we have
d(xk+1, x

∗) ≤ βq (d(xk, x∗))q .(2.1)

This is equivalent to saying d(xk+1, x
∗) = O ((d(xk, x∗))q) for k → ∞.

For q = 2, 3 the convergence is said to be (at least) Q-quadratic, Q-cubic
respectively.
For q = 1 the expressionQ-linear convergence is often reserved in the literature

to the situation where 0 ≤ β1 < 1 in (2.1) [1, 5, 6] whereas the situation β1 ≥ 1
is referred to as Q-sublinear convergence [7]. Note that this distinction generally
depends directly on the choice of the distance or norm. Consider the sequence
in R2 given by

x2k = (2−2k, 0)T , x2k+1 = (0, 2−2k)T

and the norms

‖(x1, x2)T ‖A := 2|x1|+ |x2|, ‖(x1, x2)T ‖B := |x1|+ 2|x2|.

For the A-norm we have

‖x2k+1‖A = 2−2k = 2−1‖x2k‖A and ‖x2k+2‖A = 2−2k−1 = 2−1‖x2k+1‖A.

Hence, for this sequence we have Q-linear convergence to x∗ = (0, 0)T in the
A-norm with β1 = 1/2. For the B-norm we have ‖x2k+1‖B = 2−2k+1 = 2‖x2k‖B

and ‖x2k+2‖B = 2−2k−2 = 2−3‖x2k+1‖B. Hence, in the B-norm we have Q-
sublinear convergence with constant β1 = 2. Yet, it would make sense to say
that this sequence converge Q-linearly independently of the choice of the norm.
However, to be consistent with the literature we will not use the expression Q-
linear convergence in this situation, but we will instead refer to as Q-order 1 of
convergence which is synonymous to either Q-linear or Q-sublinear convergence.
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In this article when using the notion of Q-order we will always assume the
sequence {xk}k≥0 to be convergent. Otherwise a divergent sequence like xk = k
for k ≥ 0 would satisfy the definition of Q-order with x∗ = 0 for any value of
q ≥ 1. Notice that it is not necessary for a convergent sequence to have a certain
Q-order of convergence as the example x2k := 1/(2k + 1)2, x2k+1 := 1/(2k + 1)
shows. For this example there is even no finite value of β1 satisfying (2.1) for
q = 1.
The notion of Q-order (at least) q of convergence generally depends on the

distance d in the metric space (X, d). However, in Rn by equivalence of norms
it is clearly independent of the choice of the norm.

3 Q-superorder and Q-suborder of convergence.

Our first aim in this section is to generalize the properties of Q-superlinear
and Q-superquadratic convergence by introducing the notion of Q-superorder of
convergence:

Definition 3.1. A sequence {xk}k≥0 converges to x∗ with Q-superorder (at
least) q ≥ 1 if for any βq > 0 there exists a constant Kβq ≥ 0 such that inequality
(2.1) holds for all k ≥ Kβq . For q = 1, 2, 3 the convergence is said to be (at least)
Q-superlinear [2], Q-superquadratic, Q-supercubic respectively.
We suggest that Q-order of superconvergence is synonymous terminology. The

above definition is consistent with the literature on Q-superlinear, Q-superqua-
dratic, and Q-supercubic convergence, which we suggest, are synonymous with
Q-linear, Q-quadratic, and Q-cubic superconvergence respectively. An equivalent
characterization of Q-superorder of convergence is given as follows:

Lemma 3.1. A sequence {xk}k≥0 converges to x∗ with Q-superorder (at least)
q ≥ 1 if and only if there exist a sequence of real numbers {βk}k≥0 converging
to 0 and a constant K ≥ 0 such that for all k ≥ K we have

d(xk+1, x
∗) ≤ βk (d(xk, x∗))q .

The proof is trivial.
We also have:
Lemma 3.2. A sequence {xk}k≥0 with xk �= x∗ for all k ≥ k0 converges to x∗

with Q-superorder (at least) q ≥ 1 if and only if

d(xk+1, x
∗) = o ((d(xk, x∗))q) for k → ∞.

Another similar equivalent characterization is given in Corollary 4.3 below.
From Definition 3.1 we can easily show:

Lemma 3.3. If a sequence {xk}k≥0 converges to x∗ with Q-superorder (at
least) q ≥ 1 then it converges to x∗ with Q-order (at least) q ≥ 1.
The proof is straightforward. The reverse is obviously not true in general.

As a counterexample we can consider the real sequence given recursively by
xk+1 := x2

k starting from x0 := 1/2. This sequence converges Q-quadratically
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to x∗ = 0, but not Q-superquadratically. Nevertheless, we have the following
result:

Lemma 3.4. If a sequence {xk}k≥0 converges to x∗ with Q-order (at least)
q > 1 then it also converges to x∗ with Q-superorder (at least) q̄ for any q̄
satisfying 1 ≤ q̄ < q.

Proof. Simply consider (d(xk, x∗))q = (d(xk, x∗))(q−q̄)+q̄.
It is obviously not necessary for a Q-superlinear sequence to satisfy the con-

dition of Lemma 3.4 for a certain q > 1. For example the real sequence defined
by xk := 1/k! which satisfies xk+1 := xk/(k + 1) is Q-superlinearly convergent
to x∗ = 0 in the sense of Definition 3.1, but there is no value q > 1 satisfying
the condition of Lemma 3.4.
A sequence {xk}k≥0 converging to x∗ satisfying for example d(x2k, x∗) =

exp(−22k) ·2k and d(x2k+1, x
∗) = exp(−22k+1)/(2k + 1), has the property of

converging with Q-order (at least) q̄ and even Q-superorder (at least) q̄ for any
q̄ < 2, but not for q̄ = 2. We will refer to such a sequence as being exactly
Q-subquadratically convergent (see Section 4). First we define the property of
Q-suborder of convergence as follows:

Definition 3.2. A sequence {xk}k≥0 converges to x∗ with Q-suborder (at
least) q > 1 if it converges with Q-order (at least) q̄ for any q̄ satisfying 1 ≤ q̄ < q.
For q = 2, 3 the convergence is said to be (at least) Q-subquadratic, Q-subcubic
respectively.
This definition is also motivated by Lemma 3.4. We do not include in it the

case q = 1 which would not seem to be of much interest and which should not
be confused with Q-sublinear convergence (see Section 2). From Definition 3.2
and analogously to Lemma 3.3 we have the following trivial result:

Lemma 3.5. If a sequence {xk}k≥0 converges to x∗ with Q-order (at least)
q > 1 then it converges to x∗ with Q-suborder (at least) q > 1.
Generally the notions of Q-superorder and Q-suborder (at least) q of conver-

gence depend on the distance d in the metric space (X, d). However, in Rn by
equivalence of norms they are clearly independent of the choice of the norm.

4 Exact Q-order, exact Q-superorder, and exact Q-suborder of con-
vergence.

We first give a precise definition of exact Q-order of convergence.
Definition 4.1. A sequence {xk}k≥0 converges to x∗ with exact Q-order

q ≥ 1 if it converges to x∗ with Q-order (at least) q and if it does not converge
to x∗ with Q-superorder (at least) q.
The following result states that our definition of exact Q-order q of convergence

includes the one given by Potra in [8]:
Lemma 4.1. Consider a sequence {xk}k≥0 converging to x∗ with exact Q-order

q in the sense of Potra, i.e., such that there exist two positive constants
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a > 0 and b > 0 satisfying the property

a (d(xk, x∗))q ≤ d(xk+1, x
∗) ≤ b (d(xk, x∗))q .

Then the sequence has exact Q-order q of convergence in the sense of Defini-
tion 4.1.
The proof is trivial and left to the reader. Note that the reverse is not true

in general. There are sequences converging with exact Q-order q in the sense
of Definition 4.1, but not in the sense of Potra. Consider for example in R the
sequence given recursively by

x2k+1 :=
xq

2k

2k + 1
, x2k+2 := xq

2k+1 for q ≥ 1, starting from x0 = 1.(4.1)

This sequence which converges to x∗ = 0 has exact Q-order of convergence q in
the sense of Definition 4.1 (see Lemma 4.2), but not in the sense of Potra.
A way of showing exact Q-order q of convergence is given as follows:
Lemma 4.2. Given a sequence {xk}k≥0, assume that xk �= x∗ for all k ≥ k0.

Then we can define for k ≥ k0 and q ≥ 1 the sequence of real numbers

γq,k :=
d(xk+1, x

∗)
(d(xk, x∗))q

.(4.2)

If the sequence {γq,k}k≥k0 remains asymptotically bounded (i.e., there exist two
constants Cq > 0 and Kq ≥ k0 such that γq,k ≤ Cq for all k ≥ Kq) then {xk}k≥0

converges to x∗ with Q-order (at least) q. Moreover, if in addition we do not
have limk→∞ γq,k = 0 then we have exact Q-order q of convergence.
The proof is again trivial and left to the reader. When the limit for k → ∞

in (4.2) exists we have from Lemma 3.1 and Lemma 4.2 the following result:
Corollary 4.3. Given a sequence {xk}k≥0 with xk �= x∗ for all k ≥ k0,

assume that the following limit exists for q ≥ 1

γq := lim
k→∞

d(xk+1, x
∗)

(d(xk, x∗))q
.(4.3)

The value γq is called the asymptotic constant factor. If γq > 0 we have exact
Q-order q of convergence. If γq = 0 then the sequence {xk}k≥0 converges to x∗

with Q-superorder (at least) q.
Note that the asymptotic constant factor γq depends on the choice of the

distance d. When γ1 = 0 for q = 1 or γ2 = 0 for q = 2 in (4.3), this is
often taken as a definition of Q-superlinear and Q-superquadratic convergence
(see, e.g., [3, 5, 6]) whereas Definition 3.1 is slightly more general since it also
encompasses the case where xk = x∗ for k ≥ k0. As stated in Lemma 4.2, it is
not necessary to have existence of the limit γq > 0 in (4.3) to have exact Q-order
q of convergence as the example given in (4.1) shows.
We introduce next the definitions of exact Q-superorder and exact Q-suborder

of convergence:
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Definition 4.2. A sequence {xk}k≥0 converges to x∗ with exact Q-superorder
q ≥ 1 if it converges to x∗ with Q-superorder (at least) q ≥ 1 and it does not
converge to x∗ with Q-suborder (at least) q̄ for any q̄ > q. If a sequence converges
with Q-superorder (at least) q for all q ≥ 1 then we say that it converges with
exact Q-superorder +∞.

Definition 4.3. A sequence {xk}k≥0 converges to x∗ with exact Q-suborder
q > 1 if it converges with Q-suborder (at least) q and it does not converge with
Q-order (at least) q.
Based on the following trivial result there is no need to define an exact Q-order

or an exact Q-suborder of convergence being equal to +∞:
Lemma 4.4. If a sequence converges with Q-order or Q-suborder q for all

q > 1 then it converges with exact Q-superorder +∞.
We state now the main result of this note:
Theorem 4.5. A sequence {xk}k≥0 converges to x∗ with Q-order (at least) 1

if and only if there exists a unique q ∈ [1,+∞] such that the sequence converges
to x∗ with either exact Q-order, exact Q-superorder, or exact Q-suborder q of
convergence (excluding exact Q-suborder 1 which is left undefined).

Proof. Clearly, a sequence converging with exact Q-order, exact Q-superor-
der, or exact Q-suborder q with q ∈ [1,+∞] (excluding exact Q-suborder 1)
must converge with Q-order (at least) 1. Showing the reverse implication is the
interesting part of this theorem. From Definitions 4.1, 4.2, and 4.3 the notions
of exact Q-order, exact Q-superorder, and exact Q-suborder q of convergence
are mutually exclusive. We define

q := sup { r ≥ 1 | {xk}k≥0 is of Q-order (at least) r}(4.4)

which corresponds to the definition of Q-order given by Potra in [8]. Note that
we could have defined equivalently

q := sup { r ≥ 1 | {xk}k≥0 is of Q-superorder (at least) r}
or

q := sup { r ≥ 1 | {xk}k≥0 is of Q-suborder (at least) r} ,

all these quantities being equal. If q = +∞, the sequence converges with exact
Q-superorder +∞. Assume now that q is finite. For this value of q we consider
the nonnegative real sequence {γq,k}k≥0 satisfying

d(xk+1, x
∗) ≤ γq,k(d(xk, x∗))q

and such that for each k ≥ 0 there is no smaller nonnegative value than γq,k

satisfying this inequality. If the sequence {γq,k}k≥0 converges to zero then we
have exact Q-superorder q of convergence. If the sequence {γq,k}k≥0 is un-
bounded then we have exact Q-suborder q of convergence. Otherwise the se-
quence {γq,k}k≥0 must remain bounded and does not converge to zero, therefore
we have exact Q-order q of convergence in this situation.
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We have shown in Theorem 4.5 that only the sequences which do not converge
with Q-order (at least) 1 do not possess an exact Q-order, an exact Q-superorder,
or an exact Q-suborder of convergence. For sequences converging with Q-order
(at least) 1, the value q in (4.4) is also equal to the definition of the Q-order
given by Luenberger in [5]:

q = sup
{

r ≥ 1
∣∣∣ {xk}k≥0 satisfies lim sup

k→∞

d(xk+1, x
∗)

(d(xk, x∗))r
< +∞

}

and also to the one given by Ortega and Rheinboldt in [7]

q = inf
{

r ≥ 1
∣∣∣ {xk}k≥0 satisfies lim sup

k→∞

d(xk+1, x
∗)

(d(xk, x∗))r
= +∞

}
.

An often more explicit way to compute the value q in (4.4) is by the formula

q = lim
k→∞

log(ek+1/ek)
log(ek/ek−1)

for ek := d(xk, x∗) whenever the limit on the right-hand side exists, for example
when we have the asymptotic behavior ek+1 ≈ ceq

k for k → ∞.
Note that the notion of Q-order of convergence is not an absolute measure of

the speed of convergence of a sequence, it can also be misleading. For example,
consider a first sequence xk := 2−k converging exactly Q-linearly to x∗ = 0 and
a second sequence given by y2k := 2−(22k) and y2k+1 := 2−(32k+1). The sequence
{yk}k≥0 converges more rapidly toward x∗ = 0 than the sequence {xk}k≥0 since
|yk| < |xk| for any k ≥ 0. However, the sequence {yk}k≥0 does not even converge
with Q-order 1. A slightly weaker form of order of convergence is given by the
concept of R-order of convergence (the letter R standing for the word root):

Definition 4.4. A sequence {xk}k≥0 converges to x∗ with R-order (at least)
r ≥ 1 if there exists a sequence of real numbers {βk}k≥0 converging to zero with
Q-order (at least) r such that

d(xk, x∗) ≤ βk.

The two aforementioned sequences {xk}k≥0 and {yk}k≥0 converge to x∗ = 0
with R-order 1 and 2 respectively. A drawback of the notion of R-order of
convergence is that the errors of a sequence resulting from the application of an
algorithm characterized by a certain R-order are not necessarily monotonically
decreasing. Following Potra and Pták in [9], a more refined concept of order (or
rate) of convergence is given by a certain real function instead of a real number,
but this is beyond the scope of this note.

5 Conclusion.

In this note we have given new definitions of Q-superorder and Q-suborder
of convergence. The definition of Q-superorder of convergence embraces the
properties of Q-superlinear and Q-superquadratic convergence. The definition
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of exact Q-order of convergence given here refines one given by Potra in [8]. The
new notions of exact Q-superorder and exact Q-suborder of convergence are also
introduced. Theorem 4.5 is the main result of this note and is new. It shows that
there exists a unique real number q ∈ [1,+∞] characterizing either the exact Q-
order, exact Q-superorder, or exact Q-suborder, of any sequence converging with
Q-order (at least) 1, in particular of any (at least) Q-linear convergent sequence.
To conclude shortly, the different notions of order of convergence are a means

to characterize the asymptotic behavior of the quantities d(xk, x∗) when k → ∞.
Clearly, this information cannot really be completely compressed into one unique
number. There is certainly no absolute measure of the speed of convergence
of a sequence. Nevertheless, the notions of Q-order, of Q-superorder, and of
Q-suborder of convergence already give much insight when analyzing certain
numerical algorithms and they are generally satisfactory for this purpose.
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