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Abstract.

To complement the property of Q-order of convergence we introduce the notions
of Q-superorder and Q-suborder of convergence. A new definition of exact Q-order
of convergence given in this note generalizes one given by Potra. The definitions of
exact Q-superorder and exact Q-suborder of convergence are also introduced. These
concepts allow the characterization of any sequence converging with Q-order (at least) 1
by showing the existence of a unique real number g € [1,+o0] such that either exact
Q-order, exact Q-superorder, or exact Q-suborder g of convergence holds.
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1 Introduction.

We consider sequences {xj}r>0 in a metric space (X,d) converging to an
element z* € X i.e., satisfying

lim d(zg,x*) =0.

k—o0
Certain sequences, most interestingly coming from the application of algorithms
in optimization or for the solution of systems of nonlinear equations [1, 2, 3, 4,
5,6, 7, 8, 10], can be shown to possess the property of converging with Q-order
(at least) ¢ > 1 (the letter Q standing for the word quotient). For example, it is
well-known that the successive iterates of Newton’s method applied to a system
of nonlinear equations converge locally (at least) Q-quadratically under some
smoothness assumptions.

The purpose of this note is twofold. First, we are motivated to address some
discrepancies found in the literature related to the notion of Q-order of con-
vergence. We give here some new, unifying, and more general definitions. The
second objective of this note is to give a precise characterization of any sequence
converging with Q-order (at least) 1. We show the existence of a unique real
number ¢ € [1, +o0o] such that either exact Q-order, exact Q-superorder, or exact
Q-suborder ¢ of convergence holds.

After discussing the notion of Q-order of convergence in Section 2, we give in
Section 3 a precise definition of the concepts of Q-superorder and Q-suborder of
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convergence. Then, in Section 4 we introduce the notions of exact Q-order, exact
Q-superorder, and exact Q-suborder of convergence. The definition of exact Q-
order of convergence given here is shown to be more general than one given by
Potra in [8]. Finally, we characterize any sequence converging with Q-order (at
least) 1 by showing the existence of a unique real number ¢ € [1, +00] such that
either exact Q-order, exact Q-superorder, or exact Q-suborder g of convergence
holds.

2 Q-order of convergence.

Let (X,d) be a metric space. For a normed space (X, || - ||) we consider the
standard distance given by d(z,y) := ||z — y||. The notion of Q-order of con-
vergence is concerned with the asymptotic rate of decrease of the distance of a
sequence towards its limit.

DEFINITION 2.1. A sequence {xy}r>0 converges to z* with Q-order (at least)
q > 1 if there exist two constants B4 > 0 and Ky > 0 such that for all k > K,
we have
(2.1) Awns1,2%) < By (dwy, "))

This is equivalent to saying d(zxs1,2*) = O ((d(xg, 2*))?) for k — co.
For ¢ = 2,3 the convergence is said to be (at least) Q-quadratic, @Q-cubic
respectively.

For g = 1 the expression @Q-linear convergence is often reserved in the literature
to the situation where 0 < 8; < 1in (2.1) [1, 5, 6] whereas the situation 5, > 1
is referred to as @Q-sublinear convergence [7]. Note that this distinction generally
depends directly on the choice of the distance or norm. Consider the sequence
in R? given by

Toj = (2*2]670)71, Tops1 = (07272]6)'11
and the norms
(21, 22)" || 4 == 2]z | + |22, (1, 22)" || B == [a1] + 2|w2].
For the A-norm we have
lzonialla =272 =27 |zok |4 and [Jwarsalla =272 7" = 27 |zokia [ 4.

Hence, for this sequence we have Q-linear convergence to z* = (0,0)7 in the
A-norm with 8; = 1/2. For the B-norm we have ||xax 11| 5 = 2721 = 2|22 5
and ||zopi2|lp = 27272 = 273||zox,1||p. Hence, in the B-norm we have Q-
sublinear convergence with constant §; = 2. Yet, it would make sense to say
that this sequence converge Q-linearly independently of the choice of the norm.
However, to be consistent with the literature we will not use the expression Q-
linear convergence in this situation, but we will instead refer to as Q-order 1 of
convergence which is synonymous to either Q-linear or Q-sublinear convergence.
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In this article when using the notion of Q-order we will always assume the
sequence {xy }r>0 to be convergent. Otherwise a divergent sequence like z, = k
for £ > 0 would satisfy the definition of Q-order with z* = 0 for any value of
q > 1. Notice that it is not necessary for a convergent sequence to have a certain
Q-order of convergence as the example o := 1/(2k + 1)2, 2op41 := 1/(2k + 1)
shows. For this example there is even no finite value of 3, satisfying (2.1) for
qg=1.

The notion of Q-order (at least) ¢ of convergence generally depends on the
distance d in the metric space (X, d). However, in R™ by equivalence of norms
it is clearly independent of the choice of the norm.

3 Q-superorder and Q-suborder of convergence.

Our first aim in this section is to generalize the properties of Q-superlinear
and Q-superquadratic convergence by introducing the notion of Q-superorder of
convergence:

DEFINITION 3.1. A sequence {xy}r>0 converges to x* with Q-superorder (at
least) q > 1 if for any B, > 0 there exists a constant Kg, > 0 such that inequality
(2.1) holds for all k > Kp,. For q=1,2,3 the convergence is said to be (at least)
Q-superlinear [2), Q-superquadratic, Q-supercubic respectively.

We suggest that @Q-order of superconvergence is synonymous terminology. The
above definition is consistent with the literature on Q-superlinear, Q-superqua-
dratic, and Q-supercubic convergence, which we suggest, are synonymous with
Q-linear, Q-quadratic, and Q-cubic superconvergence respectively. An equivalent
characterization of Q-superorder of convergence is given as follows:

LEMMA 3.1. A sequence {xy}r>0 converges to x* with Q-superorder (at least)
g > 1 if and only if there exist a sequence of real numbers {By}r>0 converging
to 0 and a constant K > 0 such that for all k > K we have

d(zs1,27) < Br (d(zk, 27))"

The proof is trivial.
‘We also have:

LEMMA 3.2. A sequence {xy}r>0 with x # x* for all k > ko converges to x*
with Q-superorder (at least) ¢ > 1 if and only if

d(zps1,2") = o((d(zg, 2*))?)  for k — oo.

Another similar equivalent characterization is given in Corollary 4.3 below.
From Definition 3.1 we can easily show:

LEMMA 3.3. If a sequence {xy}r>0 converges to x* with Q-superorder (at
least) ¢ > 1 then it converges to x* with Q-order (at least) ¢ > 1.

The proof is straightforward. The reverse is obviously not true in general.
As a counterexample we can consider the real sequence given recursively by
Tgi1 = a7 starting from z¢ := 1/2. This sequence converges Q-quadratically
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to * = 0, but not Q-superquadratically. Nevertheless, we have the following
result:

LEMMA 3.4. If a sequence {zi}r>0 converges to x* with Q-order (at least)
g > 1 then it also converges to x* with Q-superorder (at least) q for any q
satisfying 1 < § < gq.

PROOF. Simply consider (d(xy,2*))? = (d(zy,x*))a" D+, O

It is obviously not necessary for a Q-superlinear sequence to satisfy the con-
dition of Lemma 3.4 for a certain g > 1. For example the real sequence defined
by xj := 1/k! which satisfies xp11 := x/(k + 1) is Q-superlinearly convergent
to z* = 0 in the sense of Definition 3.1, but there is no value ¢ > 1 satisfying
the condition of Lemma 3.4.

A sequence {zp}r>0 converging to z* satisfying for example d(zok,z*) =
exp(—22F) .2k and d(xop.1,2*) = exp(—22Ft1)/(2k + 1), has the property of
converging with Q-order (at least) ¢ and even Q-superorder (at least) ¢ for any
q < 2, but not for § = 2. We will refer to such a sequence as being exactly
Q-subquadratically convergent (see Section 4). First we define the property of
Q-suborder of convergence as follows:

DEFINITION 3.2. A sequence {zy}r>0 converges to x* with Q-suborder (at
least) g > 1 if it converges with Q-order (at least) q for any q satisfying1 < g < q.
For g = 2,3 the convergence is said to be (at least) Q-subquadratic, Q)-subcubic
respectively.

This definition is also motivated by Lemma 3.4. We do not include in it the
case ¢ = 1 which would not seem to be of much interest and which should not
be confused with Q-sublinear convergence (see Section 2). From Definition 3.2
and analogously to Lemma 3.3 we have the following trivial result:

LEMMA 3.5. If a sequence {xy}r>0 converges to x* with Q-order (at least)
q > 1 then it converges to x* with Q-suborder (at least) ¢ > 1.

Generally the notions of Q-superorder and Q-suborder (at least) ¢ of conver-
gence depend on the distance d in the metric space (X, d). However, in R™ by
equivalence of norms they are clearly independent of the choice of the norm.

4 Exact Q-order, exact Q-superorder, and exact Q-suborder of con-
vergence.

We first give a precise definition of exact Q-order of convergence.

DEFINITION 4.1. A sequence {zi}r>0 converges to x* with exact Q-order
q > 1 if it converges to ™ with Q-order (at least) q and if it does not converge
to x* with Q-superorder (at least) q.

The following result states that our definition of exact Q-order g of convergence
includes the one given by Potra in [8]:

LEMMA 4.1. Consider a sequence {xy}x>0 converging to x* with exact Q-order
q in the sense of Potra, i.e., such that there exist two positive constants
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a >0 and b > 0 satisfying the property
a(d(zg, z*))? < d(xpyer, o) < b(d(xg, z%))7.

Then the sequence has exact Q-order q of convergence in the sense of Defini-
tion 4.1.

The proof is trivial and left to the reader. Note that the reverse is not true
in general. There are sequences converging with exact Q-order ¢ in the sense
of Definition 4.1, but not in the sense of Potra. Consider for example in R the
sequence given recursively by

q
x .

(4.1) zopqq := ﬁ, Topto = x5, for ¢ > 1, starting from wo = 1.

This sequence which converges to * = 0 has exact Q-order of convergence ¢ in

the sense of Definition 4.1 (see Lemma 4.2), but not in the sense of Potra.

A way of showing exact Q-order g of convergence is given as follows:

LEMMA 4.2. Given a sequence {xy}r>0, assume that xy # x* for all k > k.
Then we can define for k > ko and q > 1 the sequence of real numbers

d(xk-i-l ’ J)*)

. o (o )

If the sequence {vqxk}k>k, Temains asymptotically bounded (i.e., there exist two
constants Cq > 0 and Kq > ko such that v4, < Cq for all k > K,) then {zy }r>0
converges to x* with Q-order (at least) q. Moreover, if in addition we do not
have limy,_, o ¥4,k = 0 then we have exact Q-order g of convergence.

The proof is again trivial and left to the reader. When the limit for k — oo
in (4.2) exists we have from Lemma 3.1 and Lemma 4.2 the following result:

COROLLARY 4.3. Gliven a sequence {xy}r>0 with xy # x* for all k > ko,
assume that the following limit exists for ¢ > 1

d(.%‘k+17.%'*)
4.3 = lim ————+.
( ) Yq b o0 (d(xk,x*))q
The value 4 is called the asymptotic constant factor. If v4 > 0 we have ezact
Q-order q of convergence. If v, = 0 then the sequence {zy}r>0 converges to z*
with Q-superorder (at least) q.

Note that the asymptotic constant factor v, depends on the choice of the
distance d. When 71 = 0 for ¢ = 1 or 75 = 0 for ¢ = 2 in (4.3), this is
often taken as a definition of Q-superlinear and Q-superquadratic convergence
(see, e.g., [3, 5, 6]) whereas Definition 3.1 is slightly more general since it also
encompasses the case where x = x* for k > kg. As stated in Lemma 4.2, it is
not necessary to have existence of the limit v, > 0 in (4.3) to have exact Q-order
q of convergence as the example given in (4.1) shows.

We introduce next the definitions of exact Q-superorder and exact Q-suborder
of convergence:
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DEFINITION 4.2. A sequence {xj}r>0 converges to x* with exact Q-superorder
q > 1 if it converges to x* with Q-superorder (at least) ¢ > 1 and it does not
converge to x* with Q-suborder (at least) G for any G > q. If a sequence converges
with Q-superorder (at least) q for all ¢ > 1 then we say that it converges with
exact Q-superorder +o0o.

DEFINITION 4.3. A sequence {xy}r>0 converges to x* with exact Q-suborder
q > 1 if it converges with Q-suborder (at least) q and it does not converge with
Q-order (at least) q.

Based on the following trivial result there is no need to define an exact Q-order
or an exact Q-suborder of convergence being equal to +oo:

LEMMA 4.4. If a sequence converges with Q-order or Q-suborder q for all
q > 1 then it converges with exact Q-superorder +oo.

We state now the main result of this note:

THEOREM 4.5. A sequence {xy}r>0 converges to x* with Q-order (at least) 1
if and only if there exists a unique q € [1,+00] such that the sequence converges
to x* with either exact Q-order, exact Q-superorder, or exact Q-suborder q of
convergence (excluding exact Q-suborder 1 which is left undefined).

PRrROOF. Clearly, a sequence converging with exact Q-order, exact Q-superor-
der, or exact Q-suborder ¢ with ¢ € [1,+00] (excluding exact Q-suborder 1)
must converge with Q-order (at least) 1. Showing the reverse implication is the
interesting part of this theorem. From Definitions 4.1, 4.2, and 4.3 the notions
of exact Q-order, exact Q-superorder, and exact Q-suborder g of convergence
are mutually exclusive. We define

(4.4) g:=sup{r>1] {zk}r>o is of Q-order (at least) r}

which corresponds to the definition of Q-order given by Potra in [8]. Note that
we could have defined equivalently

g:=sup{r>1]|{zr}r>0 is of Q-superorder (at least) r}

or
g:=sup{r>1]|{zr}r>o0 is of Q-suborder (at least) r},

all these quantities being equal. If ¢ = +00, the sequence converges with exact
Q-superorder +o00. Assume now that ¢ is finite. For this value of ¢ we consider
the nonnegative real sequence {4 }x>0 satisfying

d(zpy1, %) < vgr(d(zy, z7))?

and such that for each k& > 0 there is no smaller nonnegative value than g
satisfying this inequality. If the sequence {74 x}r>0 converges to zero then we
have exact Q-superorder ¢ of convergence. If the sequence {v,x}r>0 is un-
bounded then we have exact Q-suborder ¢ of convergence. Otherwise the se-
quence {7g.% x>0 must remain bounded and does not converge to zero, therefore
we have exact Q-order ¢ of convergence in this situation. O
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We have shown in Theorem 4.5 that only the sequences which do not converge
with Q-order (at least) 1 do not possess an exact Q-order, an exact Q-superorder,
or an exact Q-suborder of convergence. For sequences converging with Q-order
(at least) 1, the value ¢ in (4.4) is also equal to the definition of the Q-order
given by Luenberger in [5]:

d(@pt1,2") }

qg=sups r>1|{xk}r>0 satisfies limsup —————F <+
Lzt e 5 (dan )"

and also to the one given by Ortega and Rheinboldt in [7]

d(xpg1,2") } '

=infd{ r>1|{x satisfies limsup ——————= = +o0
=it 21 oo PP . 27)

An often more explicit way to compute the value ¢ in (4.4) is by the formula

log(ex+1/ex)

17 2% Tog(en/er1)

for ey, := d(zk,z*) whenever the limit on the right-hand side exists, for example
when we have the asymptotic behavior ex41 =~ ceZ for k — oo.

Note that the notion of Q-order of convergence is not an absolute measure of
the speed of convergence of a sequence, it can also be misleading. For example,
consider a first sequence z, := 27% converging exactly Q-linearly to z* = 0 and
a second sequence given by yor 1= 2-*) and Yok+1 1= 2=G*™) The sequence
{yk } x>0 converges more rapidly toward z* = 0 than the sequence {z\ } x>0 since
lyx| < |zk| for any k > 0. However, the sequence {y }r>0 does not even converge
with Q-order 1. A slightly weaker form of order of convergence is given by the
concept of R-order of convergence (the letter R standing for the word root):

DEFINITION 4.4. A sequence {xy}r>0 converges to x* with R-order (at least)
r > 1 if there exists a sequence of real numbers {fx}r>0 converging to zero with
Q-order (at least) r such that

d(zg, 2") < By

The two aforementioned sequences {xj}r>0 and {yg}r>0 converge to z* = 0
with R-order 1 and 2 respectively. A drawback of the notion of R-order of
convergence is that the errors of a sequence resulting from the application of an
algorithm characterized by a certain R-order are not necessarily monotonically
decreasing. Following Potra and Pték in [9], a more refined concept of order (or
rate) of convergence is given by a certain real function instead of a real number,
but this is beyond the scope of this note.

5 Conclusion.

In this note we have given new definitions of Q-superorder and Q-suborder
of convergence. The definition of Q-superorder of convergence embraces the
properties of Q-superlinear and Q-superquadratic convergence. The definition
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of exact Q-order of convergence given here refines one given by Potra in [8]. The
new notions of exact Q-superorder and exact Q-suborder of convergence are also
introduced. Theorem 4.5 is the main result of this note and is new. It shows that
there exists a unique real number g € [1, +00] characterizing either the exact Q-
order, exact Q-superorder, or exact Q-suborder, of any sequence converging with
Q-order (at least) 1, in particular of any (at least) Q-linear convergent sequence.
To conclude shortly, the different notions of order of convergence are a means
to characterize the asymptotic behavior of the quantities d(zx, z*) when k — co.
Clearly, this information cannot really be completely compressed into one unique
number. There is certainly no absolute measure of the speed of convergence
of a sequence. Nevertheless, the notions of Q-order, of Q-superorder, and of
Q-suborder of convergence already give much insight when analyzing certain
numerical algorithms and they are generally satisfactory for this purpose.
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