LAGRANGE-D’ALEMBERT SPARK INTEGRATORS FOR
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Abstract. We consider Lagrangian systems with ideal nonholonomic constraints. These systems
can be expressed as implicit index 2 differential-algebraic equations (DAEs) and can be derived from
the Lagrange-d’Alembert principle. Methods based on a discrete Lagrange-d’Alembert principle are
called Lagrange-d’Alembert integrators and they generalize variational integrators. We define a new
nonholonomically constrained discrete Lagrange-d’Alembert principle based on a discrete Lagrange-
d’Alembert principle for forced Lagrangian systems. The principle that we propose does not make
explicit use of any Lagrange multiplier in its formulation. Nonholonomic constraints are considered
as first integrals of the underlying forced Lagrangian system of ordinary differential equations. We
show that a large class of specialized partitioned additive Runge-Kutta (SPARK) methods for index
2 DAEs satisfies the new discrete principle. Symmetric Lagrange-d’Alembert SPARK integrators of
any order can be obtained based for example on Gauss and Lobatto coefficients as already proposed
for more general index 2 DAEs. Our results are illustrated by several numerical experiments.
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1. Introduction. In this paper we consider the numerical solution of Lagrangian
systems with ideal nonholonomic constraints. Nonholonomic systems in mechanics
have a long and intriguing history [1, 5, 28]. Nonholonomic constraints involve veloc-
ities and are nonintegrable, i.e., they cannot be derived from holonomic constraints.
The dynamics of nonholonomic systems has been the subject of a controversy between
Lagrange-d’Alembert mechanics and vakonomic (variational nonholonomic) mechan-
ics. It is nowadays accepted that vakonomic mechanics does not lead to the correct
equations of motion of physical systems, but that Lagrange-d’Alembert mechanics
generally does [5, 22, 28]. In this paper we consider methods which mimic faith-
fully at the discrete level the integral Lagrange-d’Alembert principle. Such methods
are called Lagrange-d’Alembert (LDA) integrators. They fall under the framework of
geometric integration methods and they generalize variational integrators [19, 24].

Geometric integration has attracted quite a lot of interest in recent years, see for
example the book [13] and the survey paper [27]. Geometric integration methods can
be classified as extrinsic or intrinsic. Intrinsic methods are coordinate-free methods,
for example Lie group methods are defined intrinsically in terms of the exponential
map or some approximation to it on the corresponding Lie algebra to advance the
numerical solution in time. In this paper we will exclusively consider extrinsic meth-
ods. FExtrinsic methods consider an embedding of the manifold in R™ and make use
of coordinates. For unconstrained Hamiltonian and Lagrangian systems important
classes of geometric integrators are symplectic/Poisson integrators [13, 14, 21, 31]
and variational integrators which are based on a discrete version of Hamilton’s prin-
ciple [19, 24]. For unconstrained Lagrangian systems with forcing an important class
of geometric integrators are Lagrange-d’Alembert (LDA) integrators which are based
on a discrete version of the Lagrange-d’Alembert principle [19, 24].
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For ideal nonholonomic constraints the equations of motion do not derive from a
standard variational principle, but for example from the Lagrange-d’Alembert prin-
ciple [3, 4, 5, 20, 28] which is not a variational principle, but a differential principle.
For Lagrangian systems and ideal scleronomic (i.e., time-independent) linear nonholo-
nomic constraints in the velocities the Lagrange-d’Alembert principle is equivalent to
a skew critical problem which is also not truly a variational principle [3, 7, 8, 25].
Methods based on a similar discrete skew critical problem in @ x @ where @ is
the configuration space have been first introduced by Cortés in [6, 7] and have also
been called Lagrange-d’Alembert (LDA) integrators. A few low order LDA integra-
tors of this type have been developed in [11, 12, 25]. We believe that the discrete
constrained Lagrange-d’Alembert principle of Cortés [6, 7] is not sufficiently general
to include many methods of interest. Tentatives to extend this principle have been
made by Cuell and Patrick. For Lagrangian systems with ideal scleronomic linear
nonholonomic constraints these authors have shown the Lagrange-d’Alembert prin-
ciple to be equivalent to a skew critical problem in the kinematic state space TQ
[8, 9, 10]. This result has been extended to Lagrangian systems with ideal nonlinear
scleronomic nonholonomic constraints [29]. For Lagrangian systems with ideal lin-
ear scleronomic nonholonomic constraints, they have proposed discrete skew critical
methods defined directly in the kinematic state space TQ [8, 10]. We also mention
the energy-preserving methods for Lagrangian systems with ideal linear scleronomic
nonholonomic constraints considered by Betsch in [2].

In this paper we take a radically different and simpler approach. We quote from
McLachlan and Perlmutter in [25]: much work remains to be done to clarify the na-
ture of discrete nonholonomic mechanics and to pinpoint the “correct” discrete ana-
log of the Lagrange-d’Alembert principle. The nonholonomically constrained discrete
Lagrange-d’Alembert principle that we consider in this paper is certainly correct and
sufficiently general to include many methods of interest. We define a general con-
strained discrete Lagrange-d’Alembert principle directly in @ x @ based on the dis-
crete Lagrange-d’Alembert principle for forced Lagrangian systems proposed in [19],
see [24, Section 3.2]. The principle that we propose does not make explicit use of
any Lagrange multiplier in its formulation contrary to [6, 7, 8, 10, 11, 12, 25]. This
is consistent with the fact that the Lagrange-d’Alembert principle for nonholonomic
systems is not a variational principle. We remark that nonholonomic constraints can
be mathematically realized with forcing as a forced Lagrangian system. The non-
holonomically constrained discrete Lagrange-d’Alembert principle that we propose is
therefore fully consistent with the unconstrained discrete Lagrange-d’Alembert prin-
ciple for forced Lagrangian systems. It generalizes the one proposed by Cortés in [6, 7]
which appears restrictive. It is an extension in a direction awaited by McLachlan and
Perlmutter in [25, Section 8]. This extension was in fact partly suggested without
details by Marsden and West in [24, Section 5.3.7]. A large class of specialized parti-
tioned additive Runge-Kutta (SPARK) methods for index 2 DAEs is shown to satisfy
the new discrete principle. Symmetric Lagrange-d’Alembert SPARK integrators of
any order can be obtained based for example on Gauss and Lobatto coefficients as
already proposed for more general index 2 DAEs in [15, 16, 17]. An extension of the
results of this paper to submanifolds @ C R™ and holonomic constraints will be the
subject of a forthcoming paper [18].

The paper is organized as follows. In section 2 the system of DAEs of Lagrangian
systems with ideal nonholonomic constraints is given. The underlying forced La-
grangian system is also obtained. In section 3 the Lagrange-d’Alembert principle is
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discussed. A forced discrete Lagrange-d’Alembert principle for Lagrangian systems
with nonholonomic constraints is proposed in section 4. In section 5 the exact discrete
forcing terms for Lagrangian systems with nonholonomic constraints are derived. In
section 6 the main Theorem 6.1 gives sufficient conditions for SPARK methods to sat-
isfy the forced discrete Lagrange-d’Alembert principle for Lagrangian systems with
nonholonomic constraints. Several examples of Lagrange-d’Alembert SPARK inte-
grators are given in section 7. In section 8 some numerical experiments are given to
illustrate the favorable energy preservation property of Lagrange-d’Alembert SPARK
integrators. Finally, a short conclusion is given in section 9.

2. Lagrangian systems with ideal nonholonomic constraints. For sim-
plicity in this paper we suppose that the configuration space @ is the linear space
@ = R™. The constrained Lagrangian system with Lagrangian L : R x TQQ — R
(where TQ) =2 R™ x R™) and ideal nonholonomic constraints k£ : R x T'Q)Q — R™
(m < n) is given by the Lagrange equations of the second kind

d

2.1 —g=
(2.1a) pritl

d
(2.1b) 7 VoL(t ¢, v)=VqL(t,q,v) - K(t,q,v)" 9,
(2'1C) O:k(t7 q’ v)’
where
(2.1d) K(t,q,v) := ky(t,q,v).

In most applications the nonholonomic constraints (2.1c) are affine in the generalized
velocities v, i.e.,

(2.2) 0=k(t,q,v) = K(t,q)v + b(t,q).

Moreover, such ideal affine nonholonomic constraints (2.2) are oftentimes just linear
in v, i.e., b(t,q) = 0. The assumption (2.2) will actually not be needed in this paper.

2.1. The underlying forced Lagrangian system. Expanding the left-hand
side of (2.1b) we get

d
(233) vng(ta q, ’U)a’U—FK(t, q, U)Td} = _vaL(ta q, ’U) —ngL(t, q, U)U—quL(t, q, 1)).
From a computational point of view, see Section 6, it is in fact advantageous to
consider directly the formulation (2.1b) instead of (2.3a) since (2.3a) requires the
calculation of the extra terms V%, L(t, g, v) and ngL(q, v)v, the latter corresponding
to Coriolis forces. Differentiating (2.1c) once with respect to ¢ and using (2.1a) we
obtain

(2.3b) K(t,q,v)—v = —k(t, q,v) — kq(t, q,v)v.

=

In this paper we assume that the matrix

(24) < v%vL(tv%v) K(t,q,U)T

K(t,q,v) 0 ) is nonsingular.
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For example, for ideal nonholonomic constraints one can assume that K(¢,q,v) is of
full row rank m and that the Lagrangian L is regular, i.e., the Hessian matrix

(2.5) V2,L(t,q,v) is nonsingular,

V2,L(t,q,v) is generally assumed to be positive definite. Under the assumption (2.4),
from (2.3) we can express %’U and v as explicit functions of (¢,¢,v). Hence, under
the assumption (2.4) the equations (2.1) are implicit differential-algebraic equations
(DAEs) of index 2 [16]. For consistent initial values (go,vo) at to, i.e., such that

0= k(th quvO)v

assuming (2.4) and sufficient smoothness of L and k, we have existence and uniqueness
of a solution (q(¢),v(t),1(t)) to (2.1). Expressing ¢ as an implicit function of (¢, g, v),
ie., ¥ = VU(t,q,v), we obtain from (2.1ab) the underlying forced Lagrangian system

d
2. —q=
(2.6a) 1=
d
(2.6b) 7 VoLl(t,4,v)=VL(t,q,v) + fi(t,q,v),
where
(27) fL(t7Q7v) = —K(t,q,’l))T\I/(t,q,’U)

can be interpreted as a forcing term. This corresponds to a mathematical realization of
the nonholonomic constraints (2.1¢). By construction the functions k(t, ¢, v) of (2.1c)
are first integrals of the forced Lagrangian system (2.6)-(2.7) since £ k(t,q,v) = 0 by
definition of ¥(t,q,v).

2.2. Energy. The energy of the system (2.1) is defined as
(2.8) E(t,q,v) := Ly(t,q,v)v — L(t, q,v).

We have

d

d
EE(t’ q,v)= (%Lv(t, q, v)) v+ Ly(t,q,0)0 — Ly(t, q,v) — Lq(t, q,v)v — Ly(t, q,0)0

:Lq (tv q, 1})’0 - wTK(ta q, ’U)U - Lt (tv q, 1}) - Lq (ta q, ’U)U
= _wTK(tv q, U)U - Lt(tu q, U)'

For ideal scleronomic (time-independent) nonholonomic constraints linear in v 0 =
K(q)v and time-independent Lagrangians L(t,q,v) = L(q,v) the energy is conserved
since K (¢)v =0 and L;(g,v) = 0.

3. The Lagrange-d’Alembert principle. For ideal affine nonholonomic con-
straints (2.2) the equations (2.1) can be derived from the Lagrange-d’Alembert princi-
ple 3, 4, 5, 20, 28] which is a differential principle. The Lagrange-d’Alembert principle
states that the virtual work vanishes

d
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for all reversible (i.e., with ¢ in the interior of the configuration space Q) virtual
displacements §*q satisfying

(3.1b) K(t,q)6*q = 0.

Notice nevertheless that energy can still be created or dissipated along a trajectory
of (2.1), see subsection 2.2 above. The definition of ideal nonholonomic constraints is
equivalent to the Lagrange-d’Alembert principle (3.1ab) with (3.1b) for ideal nonlinear
nonholonomic constraints simply replaced by

(3.1¢c) K(t,q,q)0"q¢ = 0.

This is the Maurer- Appell-Chetaev-Johnsen-Hamel rule, see e.g. [28, p. 820], usually
simply called Chetaev’s rule. From (3.1c) we obtain the expression (2.1d) in (2.1b).
For ideal nonholonomic constraints a different equivalent and finite-dimensional vari-
ational principle leading to (2.1) is Gauss’ principle of least constraint [20, 28, 30], but
it is based on the generalized accelerations ¢ and is thus generally seen as an inferior
principle.

3.1. The Lagrange-d’Alembert principle as a skew critical problem.
For ideal linear scleronomic nonholonomic constraints 0 = K(q)g¢, the Lagrange-
d’Alembert principle is equivalent to a skew critical problem [3, 7, 8, 9, 10, 25, 29]
described as follows. Given a Lagrangian L(t, q,q) € C°([to, tn], TQ) and ideal linear
scleronomic nonholonomic constraints 0 = K (¢)g we form the action integral between
qo at to and qn at ty

tn

A= [ L0, a0
to

which is a functional for ¢ € C!([to,tn], Q) satisfying q(to) = qo, q(tn) = qn, and

0 = K(q(t))¢(t). The Lagrange-d’Alembert principle is then equivalent to the skew

critical problem

(3.2) 5A(q)(8q) =0 Voq e Ci([to,tn], Q) | K(q)dg=0

where 0 A(q) is the first variation (i.e., the Gateaux derivative) of the action. Hamil-
ton’s variational principle is not valid in the presence of ideal nonholonomic con-
straints contrary to ideal holonomic constraints. Observe that in (3.2) we do not have
the seemingly more natural condition

1 ) : . .
lim ~K (g +£0q)(q + edq) = Kq(a)(d, 6¢) + K(g)dq = 0.

Hamilton’s principle applied to problems with ideal nonholonomic constraints leads
to the generally different vakonomic equations [1, 5, 28] which do not agree with
physical experiments [22]. It is worth mentioning that the practical realization of
nonholonomic constraints is a problem in itself which may be quite difficult [23, 32].

3.2. The integral Lagrange-d’Alembert principle for forced Lagrangian
systems and for Lagrangian systems with nonholonomic constraints. For
forced Lagrangian systems (2.6) the (continuous) integral Lagrange-d’Alembert prin-
ciple is

5A(q)(dq) + / " Fult a0, d()TSq(t)dt = 0 Vg € Cl([to, t], Q).

0
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For systems with nonholonomic constraints fr, is given by (2.7) and we can simply
add the conditions

0= k(t,q,9)

This principle is simpler and more general than the skew critical problem of subsec-
tion 3.1.

3.3. Nonideal constraints. The constraints (2.1c¢) are called nonideal when
the Lagrange-d’Alembert principle (3.1) does not hold. For example, Chetaev’s rule
(3.1c) may be unsuitable in certain situations, see, e.g., [23]. For Lagrangian systems
with nonideal nonholonomic constraints (2.1b) is replaced by

d
%VUL(ta q, ’U) = VqL(tv q, 1)) - K(ta q, U)T1/) + N(ta q,0, 1/’)

with Ny # 0. For example dry sliding friction can lead to such formulations, see, e.g.,
[28, Example 3.2.6]. Even holonomic constraints can be nonideal, see, e.g., [33, 34].
Notice that the SPARK methods of Section 6 can deal with systems having nonideal
constraints without any particular difficulty.

4. A forced discrete Lagrange-d’Alembert principle for Lagrangian sys-
tems with nonholonomic constraints. For Lagrangian systems with nonholo-
nomic constraints we define in this section a general constrained discrete Lagrange-
d’Alembert principle directly in @ x @ based on the discrete Lagrange-d’Alembert
principle for forced Lagrangian systems.

4.1. The forced discrete Lagrange-d’Alembert principle and Euler-La-
grange equations. For forced Lagrangian systems (2.6) the corresponding forced
discrete Lagrange-d’Alembert principle proposed in [19], see [24, Section 3.2], is

N-1

(41) o Z La(tr, @k tit1, Gev1)

k=0

N—

+ > (o e @ iy rs @rr1) " 0qx + £ (b @i togrs ahr) 0giga) =0
k=0

—

for all variations {dgx}i_, with g, € R" satisfying dgo = 0 = Sqn. The discrete
Lagrangian Lg(t, i, tk+1, @e+1) (or local discrete action) is an approximation to the
exact discrete Lagrangian (the exact local action) between ¢, and tg41

tht1
La(tes Qs te1s Grr1) = LY by Qs to1, Grs) i= / L(t,q(t),q(t))dt
tk
where q(t) := q(t,tr, qrs thit1, qet1). The discrete forces fy (tk, qrstit1, qes1) and
I (ti, qrs tig1, 1) above are approximation to the exact discrete forces between
and tk+1

(4.2a) F7 @y @ros tets arn) " = F7 (b Qi i, @gn)
tr41
= [ Aulteato. ) 2, a0t
23
(4.2b) f;(tb Q> L1, %H)T“ffﬂtk, Tttt o)

= / T F0(6), ()T Dy o)

ty



Lagrange-d’Alembert integrators for nonholonomic systems 7

The discrete principle (4.1) is equivalent to the forced discrete Euler-Lagrange equa-
tions

(4.3) VaLa(te—1,qr—1,tk, ar) + VoLa(te, qr, ter1, Ger1)
+f et @1y tey @) + f7 by Qs th1, Q1) = 0
for k=1,...,N — 1. These equations (4.3) define a mapping
RXxQXxRxQ—RxQxRxQ,
b { (tk—1, Qk—15tks Q) = (tks Qi thr1, Qry1)-

From q(tu tk-i—l y Qk+1, tka Qk) = q(tu tku dk, tk-‘rla Qk+1) we have the anti'symmetry prop-
erties
LY (tks1, bttty ak) = =LY (th, qiy ti1, G,
f,er(thrlvQkJrlatka‘]k)):_dei(tkanathrlaQk+1)7

FE g1y Ghs1 oty @) = — F2 T by Qs s 1, Qhg)-

Hence, from these properties we could require

Lg(trs1, Ghr1strs qe) =—La(tr, qrstert, qrs1),
S ety @t st i) = = F (bey Qe 1 Qg1
fa ety Qetts b @) =— Fof (b, Qe g1, Qrt1)

as part of the conditions of the forced discrete Lagrange-d’Alembert principle (4.1).
This makes sense from a boundary value problem point of view, but this is not fully
justified from an initial value problem point of view. For an initial value problem,
we are only interested in integrating in a specific time ¢ direction and nonsymmetric
methods may also be appropriate when the forced Lagrangian system (2.6) has no
symmetry or reversibility properties.

4.2. The nonholonomically constrained discrete Lagrange-d’Alembert
principle and Euler-Lagrange equations. For Lagrangian systems with nonholo-
nomic constraints, the integral Lagrange-d’Alembert principle for Lagrangian sys-
tems with nonholonomic constraints stated in subsection 3.2 and the forced discrete
Lagrange-d’Alembert principle (4.1) motivate the following definition:

DEFINITION 4.1. For Lagrangian systems with ideal nonholonomic constraints
(2.1) we define the nonholonomically constrained discrete Lagrange-d’Alembert prin-
ciple as

N—-1
(443“) 5 Ld(tka qk, tk+la qk+1)
k=0
N-1
3 (o s i trerrs @) 0ax + £ (b @i thgrs grn) " 0arn) = 0,
k=0

(4.4b) 0= c(tg, qr,tr+1,qk+1) for k=0,...,N —1,

for all variations {5qi }1_, satisfying 6qo = 0 = Sqn, with f; and fI asin (4.2), fL
as in (2.7), and

c(th, G bt 1, Qror1) = Kttt Qo1 Wttt th Qi tt1s Qlt1))
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with

d
w(t, thy Qs tht 1, Qo) = EQ(tatkanathrlanJrl)-
We assume that c(t,q,t,q) =0Vt € R Vq € Q.
The nonholonomically constrained discrete Lagrange-d’Alembert principle of Def-
inition 4.1 is equivalent to the nonholonomically constrained discrete Euler-Lagrange
equations

(4.5a) VaLa(te—1,qk—1,tk, @) + VaLa(te, qr, ter1, Ger1)
+f o (t—1s Qr—1s s qr) + f (ks Qs tog 1, qen) = 0,
(4.5b) c(th—1, Q-1 s, @) = (tks Qi tht1, Q1)
for k =1,..., N—1 where we assume that ¢(to, qo,t1,q1) = 0 or ¢c(tN—1,9N-1,tN,qN)

= 0. Notice that (4.5b) implies (4.4b). Assuming c(to, qo,t1,¢1) = 0 the equations
(4.5) define a mapping

Cq — Cy,
D .
(th—1, Qlo—1, trs @) — (tk, Gk Lttt Qog1)-

on the constraint submanifold
Ca={(s5,4,t,7) ERx QxR xQ | c(s,q,t,7) =0}.

We remark that ideal nonholonomic constraints can be mathematically realized with
forcing (2.7) as a forced Lagrangian system (2.6). The nonholonomically constrained
discrete Lagrange-d’Alembert principle that we propose here is fully consistent with
the unconstrained forced discrete Lagrange-d’Alembert principle (4.1) for forced La-
grangian systems as briefly suggested by Mardsen and West in [24, Section 5.3.7]. Tt
also generalizes the one proposed by Cortés in [6, 7] which appears restrictive. It is
an extension in a direction awaited by McLachlan and Perlmutter in [25, Section 8].

5. The exact discrete forcing terms for Lagrangian systems with non-
holonomic constraints. Consider a solution to (2.1)

q(t) = q(t,to, g0, t1,q1)

passing through gg at tp and ¢ at t; and let

d
v(t) = v(t, to, g0, t1,q1) == t,to,qo,t1,q1) = 0xq(t, to, qo, t1, q1)-

EQ(

Consider the exact discrete Lagrangian (the exact local action) as a function of
(t05q07t17Q1)

LY (to,q0.t1,q1) == / 1 L(t,q(t),v(t))dt.

to

Notice that for unconstrained systems S1(qo, ¢1) := L% (to, qo,t1,¢1) can play the role
of a generating function of type I. We denote

vo :=v(to), vi:=0v(t1), po:=VyL(to,q0,v0), p1:=VuL(t1,q1,v1).
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We have
t1
aqo Lf (t07 qo, tla (J1) :/ Lq (tu Q(t)v U(t))aqo Q(t) + L’U (t7 Q(t)u U(t))aqov(t)dt
to

- /t " Lt alt), o) Buqlt) — %Lv(t, a(t), v(£)) Dy a(t)dt
- Ly (t,q(t), v(£))Ogoa (1)1}
_/tt (Lq(t,q(t),v(t)) - %Lv(t,q(t),v(t))) B, a(t)dt
+ Lg(t1,q1,v1)9,q1 — Lo (to, 0, v0) g0 0
Z/t:l W(t, q(t), v(t)T K (t,q(t), v(t))dgyq(t)dt — pg .
Defining

de_(thq07t17q1) ‘= —Po — quLf(thq07t17Q1)7

we have obtained

(5.1) 90 LE (to, qo,t1,q1) = —pg — £ (to,q0,t1,q1)”

where
t1
dei (th q0, tla ql)T = - / \I/(ta q(t)v ’U(t))TK(t, q(t)v v(t))a%q(t)dt
to
From the Fundamental Theorem of Calculus we have

t d ty
qt) =q —|—/ d—q(s)ds =q — / v(s)ds
t, a8 t

QO q / aqo v

leading to

Hence,

(5.2) :
Similarly, we obtain

Oy LE (to, d0 11, 1) = T + / Wt glt), v(6) T (¢ g(), v(1) Dy a(t)dt.
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Defining

F7H (o, g0, 11, q1) == p1 — Vg, L (to, qo, 11, q1),
we have
(5.3) g, LY (to, o, t1, 1) = pi — [ (to, g0, t1, 1) "
We obtain

fi (b0 g0t 01)" = —/ Wt q(0),0(0)T K (¢ q(t), o(t) D a(t)dt

to

and
¢
Bqlq(t):/ g, v(s)ds
to

leading to

t1

6) 15 oantra)” == [ ([ w0000 K a0, 00 ) 005005

to

We assume that the values t; are independent of the values g;. For example one
considers a constant stepsize h and the values

ty :=to+kh for k=0,...,N.
We calculate for k=1,...,N —1

N-1
Va Z LE, a5, ti41,041) = Ve (L5 b1y o1yt qk) + LT (te, Qhos Lt 1, Q1))
=0

=VaLY (te—1, Qo—1: ths @) + V2L (ts Qo trt1, Grr1)
=p — fer(tkfl,Qkfl,tk, k)
Pk =[5 (ks Qo tiot15 Q1)

= b1y b1ty @) — ¥ (tey Qe th 15 Qht1)-

This leads to
VaLE (te—1, @r—1, tes @) + VoLE (t, @y tig1s Q1)
7 (b1, Qoo iy @) + £7 (b Qs to 1, Q1) = 0
where

fer(tk—lvq}’c—latkan)T:_/k q}(tvqof)J’U(t))TK(tvQ(t)vv(t))Tanq(t)dt

th—1

(5.5a) =— /t:kl (/Stk \I/(t,q(t),v(t))TK(t,q(t),v(t))dt> Og, v(s)ds,

5 (b it i) T = — / Wt g0, o) T I (1 1), 0(1) T gy a(t)dt

ty

(5.5b) :/:+1 (/S ‘I’(t,q(t)m(t))TK(t,q(t),v(t))dt) Og,, v(8)ds.

23
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5.1. Ideal holonomic constraints. When the constraints (2.1c) are holonomic,
we have

0=yg(t,q)
for a certain function g : R x R” — R™. Therefore, we get
0= 4o9(t, (1)) = gq(t; 4(£))Dgo4(t)-
In this situation, since
0= g4t q) + 94(t; gJv =: k(t, g, v),
we have k,(t, q,v) = g4(t, q), hence we must have
0= ku(t,q(t),v(t))0gq(t), 0= ky(t,q(t),v(t))0q q(t).

For ideal holonomic constraints we have K (¢, q,v) = k,(t,q,v), and since k,(t, q,v) =
9q(t, q) we obtain

quLdE(thO,tla(Jl) = —Po, vq1L§(t07q07tluq1) = P1,

and thus

fEr=0, fF=o.

6. Lagrange-d’Alembert SPARK integrators. Following [15, 16, 17] the
application of an s-stage SPARK method to Lagrangian systems (2.1) with non-
holonomic constraints, stepsize h, and consistent initial values (o, go,vo) at to, i.e.,
0 = k(to, g0, v0), can be expressed as

(6.1a) Qi:qo—i-hZaijV} fori=1,...,s,
j=1

(61b) Pizpo—I—hZZiiij—i-hZZiinj forizl,...,s,
j=1 j=1

(6.1c) qQ1=qo +thjV},
j=1

(61d) plzpo—l—thij +hzijj’
j=1 j=1

(6.1¢) 0=) wyK; fori=1,...,s—1,

j=1
(6.1f) 0=Fk(t1,q1,v1),

where t1 :=tg + h and
T; :=to+cih, P;:=V,L(T;,Q:, Vi), F;:=VL(T;,Q:, Vi),
Ri = _K(EaQZ;‘/Z)T\IJZ; KZ = k(TZaQZ;‘/Z) for i = 17"'585
po = VuL(to, qo,v0), p1:= VuL(t1,q1,v1).
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The coefficients w;; in (6.1e) can be taken for example as w;; := bjcé_l fori=1,...,5—
1,j=1,...,s. Under certain assumptions on the coefficients of the SPARK method
we obtain a mapping (t1,¢1,v1) = Pp(to, go, vo) for |h| sufficiently small [15, 16, 17].
Instead of considering the unknown quantities in equations (6.1) as implicit functions
of (to, o, vo, h) for h = t1 —tg, we consider them as implicit functions of (to, qo,t1,¢1)-
More precisely, we implicitly define by (6.1) as functions of (g, o, t1, ¢1) the quantities
V0, V1, Pos P1, @iy Vi, Ui, Py, Fy, Ry, K for i = 1,...,s. The main result of this paper is
as follows:

THEOREM 6.1. For Lagrangian systems with nonholonomic constraints (2.1) and
a corresponding s-stage SPARK method (6.1), suppose to,qo and t1,q1 to be given. If
the SPARK coefficients satisfy

fori=1,... s,

(6.2a) b;=b;
b;=0 fori,j=1,... s,

(6.2b) biaij +bja;; —b;

then we have a nonholonomically constrained discrete Lagrange-d’Alembert integrator
in the sense of Definition 4.1 with

La(to, qo. t1, 1) =h Y _ b L(T;, Qs, Vi),

f7 (to, q0,t1, 1) :—th by (b = @) VT K (T5,Q5,V5) | 04, Vi,

j=1
f (to, g0, t1, 1) —th hZaww K(Tj,Q;,V;) | 04, Vi-

Suppose in addition that the SPARK coefficients satisfy the symmetry conditions

(6.3a) Csy1—i =1 fori=1,... s,

(6.3b) Ost1—is1—j + Qij=bsy1—j = b; fori,j=1,...,s,
(6.3¢) Ust1—i,s+1—j + Gij :BS+17j = Ej fori,j=1,...,s,
(6.3d) Us41—i,sl—j + Qij :55+1,j = Ej fori,j=1,...,s

then the SPARK method (6.1) is symmetric and we have

Ld(tlaqlathqO):_Ld(t07q07t17q1)a
[t a1, to, q0)=—f (to, g0, t1, q1),
fj(tlaQ1,t0=QO)=—fj(to7(Jo,tla(h)-

Proof. We calculate

9goLa(to, g0, t1,q1) = hzbiLq(Qia Vi)0q, Qi + hzbiLv(Qia Vi) 0o Vi
i=1

i=1

= hzs:biFiT I+ hiaijaqovj + hibipfaqovi

i=1 j=1 i=1
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_th FTI—i-hQZZba”F 00 Vi

=1 j=1

+hY b (g +hY A F + Ry ayR] | 04, Vi

=hY bFT+h>> 0 (bjas + bidig) F} 04, Vi

j=1 i=1 j=1
+p0th Ao Vi + h2Zb > @i R] | 0g, Vi
j=1

From (6.1c) we have
0=T+h> bidgVi,
i=1

hence

S

Ogo La(to, qo,t1, q1) = b Z Z(bjaji + bty — bbi) F 94, Vi — p§.

Under the assumptions (6.2) we obtain

g Lalto, qo,t1,q1) = —pg —h»_bi [ 0> @i T K(T;,Q;,V5) | g, Vi
i=1 =1

which is the discrete analogue of (5.1)-(5.2). Similarly, we get

gy La(to, qo, t1, 1) = h* Z Z(bjaji + bitiij — bibi) FT 03, Vi + pT

i=1 j=1
+h2Zb > (ai; — b)RY | 0, Vi
Jj=1

Under the assumptions (6.2) we obtain

aqlLd(t07q07tlaq1):pT+thi Z az] \I] K(TJ7Q]7 ]) aql‘/;

which is the discrete analogue of (5.3)-(5.4). Under the additional symmetry con-
ditions (6.3) the SPARK method (6.1) is symmetric, and the internal values of the
adjoint method satisfy T; = Ts41- Z,Q = Qsr1-i,Vi = Vip1-4,9; = Uy 14, see
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[16, 17]. We have
La(t1, 1,0, 0) ——thL Vi)

=—h Z biL(Ts41—iy Qst1—is Votr1-:)

i=1
:—histrl—iL(Ti,Qi,Vi)
i—1
:_hibiL(Ti, Qi, Vi) = —La(to, qo,t1, q1)-
i=1
We have
fd_(tlafh,toa(lo)T
—h)ibi (=h) s a0 K(T;,Q,,V;) | 04,V

:hzbi hzau s+1— J s+1 ]7QS+1 ]7‘/5+1 ]) aqle-‘rl—i

=h Z bst1—i | h Zasﬂ—l—i,s-l-l—j\II?K(Tja Q;,V;) | 94, Vi
i=1 =1

:hzbi Z azg \I} K(T]7Q]7 ]) 6(11‘/; = _f;(t07q07tlaq1)T'

Similarly, we get

f;(tlale,to,QO)T
s s T _
=) b | (—h)Y (b — @), K(T;,Q;.V;) | 04,V
1=1

j=1

:—thi hZ(gj_Eij)qjsTJrlij(TerlfjvQerlfjvVerlfj) Ogo Vst1-i
:—thsﬂ,i hZ(fgerlfj_aerlfi,erlfj)\I/fK(Tjana‘/j) 0go Vi

i=1 j=1

=—h) b hzaw‘l’ K(T;,Q;,V;) | 0aVi = —f (to, qo, t1, q1)" .

Results about global convergence of SPARK methods can be found in [16, 17].
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7. Examples of Lagrange-d’Alembert SPARK integrators. Examples of
SPARK methods satisfying the conditions of Theorem 6.1 are given by the family
of Lobatto SPARK methods described in [16] and the family of Gauss SPARK (also
called SRK-DAE2) methods given in [17]. The s-stage Gauss SPARK methods have
optimal global order of convergence 2s, while the s-stage Lobatto SPARK methods
have global order of convergence 2s — 2 as shown in [16, 17]. We present a few
specific examples of such methods below. In particular we consider their application
to time-independent Lagrangians of the form L(t,q,v) = 10" Mv — U(q) with M
symmetric and nonsingular, and scleronomic nonholonomic constraints affine in v,
ie., k(t,q,v) = K(q)v + b(q).

7.1. The “symplectic” Euler SPARK method I. For s = 1 the Butcher-
tableaux of coefficients of the “symplectic” Euler SPARK method I of order 1 are
given by

010 | 1 | 1
Al | il

)
)
Il
S
Il
oy

The method reads as follows
q1=qo +hV1, Py =po + h(Fy + Ry), p1 = P, 0= Fk(t1,q1,v1),
where

tii=to+h,  po:=VyL(te,qo0,v0),  p1:=VyL(t1,q1,01),
Py :=V,L(to, qo, V1), Fy :=VL(to, q0, V1), Ry = —K(to,q0, V1) V1.
This method does not satisfy the symmetry conditions (6.3). For L(¢, ¢, v) = %’UTM’U—

U(q) with M symmetric and nonsingular, k(t, q,v) = K(q)v + b(q), we have V; = vy
and we obtain a system of nonlinear equations for ¢, v1, and ¥,

q1 = qo + hv, Muvy = Muvy — h(VU(q0) + K (q0)" 1), 0= K(q1)v1 + b(q1).

When K(q) = K = Const and b(q) = b = const, the method is linearly implicit,
i.e., only a linear system needs to be solved. This is a method given in [25, Formula
(4.17)] (with a typo, there should be VV'(¢;)) when M = I and b(q) = 0.

7.2. The “symplectic” Euler SPARK method II. For s = 1 the Butcher-
tableaux of coefficients of the “symplectic” Euler SPARK method II of order 1 are
given by

11 | 0 |0
A F 7

Sl
Il
o
Il
o

The method reads as follows
q1 = qo + hV1, Py = po, p1 = po + h(F1 + R1), 0= k(t1,q1,v1),
where

t1 :=to + h, po == V4 L(to, o, o), p1 = Vo L(t1,q1,v1),
Py :=V,L(t1,q1,V1), Fy :=V4L(t1,q1,V1), Ry = —K(t1,q1, V1) 0.
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This method does not satisfy the symmetry conditions (6.3). For L(t,q,v) = 20" Mv—
U(q) with M symmetric and nonsingular, k(t,q,v) = K(q)v + b(q), we have V; = vg
and we obtain a system of linear equations for ¢1,v1, and ¥y

q1 = qo + hvo, Muvy = Mvg — h(VU(q1) + K (q1)" 1), 0= K(q1)v1 + b(q1).

The method is thus linearly implicit. This is a method given in [25, Formula (4.12)]
when M =T and b(q) = 0.

7.3. The 1-stage Gauss SPARK method, the SPARK midpoint rule.
For s = 1 the Butcher-tableaux of coefficients of the 1-stage Gauss SPARK method
of order 2, the SPARK midpoint rule, are given by

1/211/2 o~
/ / A=A=A
A 1

3 )

The method reads as follows

1 1
Q1=(Jo+h§V1, P1=p0+h§(F1 + Ry),
1= qo+ hVi, p1=po+ h(F1 + Ry), 0= k(ti,q1,v1),

where

h
Ty ==t + 3’ t1 :=to + h, po = V4 L(to, qo, o), p1 = VyL(t1,q1,v1),
Py :=V,L(T1,Q1, V1), Fy =V, L(Ty,Q1, V1), Ry = —K(T1,Q1, V1) 0.

This method satisfies the symmetry conditions (6.3). With 0 = k(T1, @1, V1) instead
of 0 = k(t1, g1, v1) to treat the nonholonomic constraint (2.1¢), the “standard” 1-stage
Gauss IRK method does not satisfy the nonholonomic constraints (2.1c) and it has
only order 1. For L(t,q,v) = %vTMv — U(q) with M symmetric and nonsingular,
k(t,q,v) = K(q)v+ b(q), we obtain a system of nonlinear equations for ¢;,v1, and ¥y

h
a1=qo + 5 (vo +v1),

+ +a\"
Muv, = Muvy — hVU <q° . ‘h> —hK <u> U,

2
0=K(q1)v1 + b(q).

7.4. The 2-stage Gauss SPARK method. For s = 2 the Butcher-tableaux
of coefficients of the 2-stage Gauss SPARK method of order 4 are given by

1/2—-+/3/6 ‘ 1/4 1/4—+/3/6
1/2+/3/6 | 1/44/3/6 /4 A=A=A, b=b=b.
A | e 1/2

The method reads as follows

QIZQO‘Fh(iVl‘F (i—?) V2>a
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Pr=po+h <£(F1 + Ry) + (% - ?) (F2+R2)> ;

p1=po + h

1
O: §K1 + —KQ,
0=Fk(t1,q1,v1).

where

1 3 1 3
T1::to+<§—%_>h, T2::t0+<§+%>hu ti:=to+h,

po := V., L(to, g0, v0), p1 =V, L(t1,q1,v1), Py =V, L(T1,Q1, V1),

Py :=V,L(T3,Q2, V2), Fy =V L(T1,Q1, V1), Fy =V L(T3, Q2, V>),
Ry == —K(T1,Q1,V1)" ¥y, Ry = —K(Ts,Q2,V2)" ¥y,

Ky := k(T1,Q1, V1), Ky := k(Tz, Q2, V2).

This method satisfies the symmetry conditions (6.3). With 0 = K; and 0 = K>
instead of 0 = %Kl + %Kz and 0 = k(t1,q1,v1) to treat the nonholonomic constraint

(2.1c), the “standard” 2-stage Gauss IRK method does not satisfy the nonholonomic
constraints (2.1c) and it has only order 2.

7.5. The 2-stage Lobatto IIIA-B SPARK method. For s = 2 the Butcher-
tableaux of coefficients of the 2-stage Lobatto IIIA-B SPARK method of order 2 are

given by
0] 0 0 1/2 0
1]1/2 172

Al2 12 A

The method reads as follows

QquOa
1
Py =po + h§(F1 + R1),

1 1
Q2=q +h (5‘/1 + §V2> )

1
Py=pg + h§(F1 + R1),

1 1
= h — —
qg1=qo + <2V1+2V2>7
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1 1
p1=po+h (§(F1 + Ry) + §(F2 +R2)) ;

1 1
0==-K - K
5 1+ 5 %2
0=~k(t1,q1,v1),
where

(7.1) T :=to, Ty :=tg + h, ty :==tg+ h,
po := VyL(to, g0, v0), p1 =V, L(t1,q1,v1), Py =V, L(T1,Q1, V1),
Py := V,L(T3,Q2, V2), Fy =V L(Ty,Q1,V1), Fy :=V L(Tz, Q2, V2),
Ry == —K(T1,Q1,V1)" ¥y, Ry = —K(Ts,Q2,V2)" ¥y,
Ky = k(T1,Q1, V1), Ky := k(Tz, Q2, V2).

This method satisfies the symmetry conditions (6.3). It is interesting to notice that
this method is not equal to the composition with stepsize h/2 of the “symplectic” Euler
SPARK method I with the “symplectic” Euler SPARK method II or vice versa. For
L(t,q,v) = %’UTMU — U(q) with M symmetric and nonsingular, (¢, q,v) = K(q)v +
b(q), we obtain first a system of nonlinear equations for ¢1, V1, ¥

1
MVy=Muvo = hz(VU(q0) + K (q0)"01),

q1=qo + hV1,
(12) 0=5 (K (a0)Vi + bla0)) + 5 (K (an)Vi + blan).

which is a linear system when K (q) = K = Const and b(q) = b = const, and then a
system of linear equations for vy, (h/2)¥4

h 1
le —+ K(ql)T <§\IJ2) :M‘/l — thU(ql),

K(q1)n =—b(q1).

This is the analog for systems with nonholonomic constraints of the Stérmer/leap-
frog/Verlet/RATTLE/SHAKE/2-stage Lobatto IITA-B SPARK methods for systems
with or without holonomic constraints. For constant stepsizes hx = h the step-by-step
integration of the above method can be simply expressed as follows

Muy 1 =Muvy_ 1 —h(VU(qr) + K(q)" W),

Qrt1=qr + vy 1,

0= 5 K @)y +Daw)) + 5 (K (@us 1)y +Dansn)

In this situation the values of vy, ¥ ;, and the equations

2
K (qr)vk =—b(qr)-

h 1
M’Uk —|— K(qk)T <_\1127k> :M’UkJr% — thU((]k),

are not needed in a step-by-step integration. The method above is not equivalent to
[12, Formula (11)] which does not make use of the additional constraint (7.2). It is also
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not equivalent to the McLachlan-Perlmutter’s 2-stage Lobatto IIIB-A LDA method,
see [25, Formula (4.18)] and [26], which does not make use of the additional constraint
(7.2), but which can be interpreted as a 2-stage Lobatto ITIB-A method where the
2-stage Lobatto IIIB coeflicients are applied to ¢ = v and the 2-stage Lobatto IIIA
coefficients are applied to M7 = —VU(q) — K(q)T¢. The McLachlan-Perlmutter’s
2-stage Lobatto IIIB-A LDA method can be expressed as

(7.3a) Qi=qo + h%/an

(7.3b) Muvy=Muvy — h(VU(Q1) + K(Q1)"¥1),
(7.3c) g1=qo+h (%Uo + %Ul) ;

(7.3d) 0=K(q1)v1 + b(q1).-

All those methods are semi-implicit and VU must be evaluated only once per time
step.

7.6. The 2-stage Lobatto ITIA-B-D SPARK method. For s = 2 the But-
cher-tableaux of coefficients of the 2-stage Lobatto IITA-B-D SPARK method of order
2 are given by

0‘ 0 0 ‘1/2 0 ‘1/4 —1/4

1]1/2 1/2 1/2 0 3/4  1/4 b=0b=b.
All2 1)2 A a|
For s = 2 the Lobatto IIIA-B-D SPARK method of order 2 reads as follows
QquOa
1 1 1
P =py+h <§F1 + 131 - ZRQ) ;
Qo=gqo+h [ 1vi 4+ 1y,
2=4o 2 1 5 2]
1 3 1
Pg—p0+h(§F1+ZR1+ZR2)u
=qo+h lV —i—lV
q1=4qo B 1 5 2],
1 1
p1=po+h <§(F1 +Ri)+ E(FQ +R2)) ;
1 1
0==-K K
5 1—|—2 2,

0=~k(t1,q1,v1),

with Tl, TQ, tl;pO;pl; Pl, PQ, Fl, FQ, Rl, RQ, Kl, KQ as in (71) This method satisfies
the symmetry conditions (6.3). We could also have considered the Lobatto IIIA-D
SPARK method of order 2, the pure Lobatto ITID SPARK method of order 2, etc.

8. Numerical experiments.
8.1. The nonholonomic particle. This problem can be found in [6, 7, 12]. We

consider the time-independent Lagrangian

Ligw) =T() ~Ula), T():= 503 + 3 +d), Ul)=a +3
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with ideal scleronomic nonholonomic constraint
vg —qov1 =0
which is linear in v. From subsection 2.2 the energy
E(q,v) =T(v) +Ulq)

is conserved. The system is reversible under the transformation R : (g,v) — (g, —v).
We consider the following initial conditions at top = 0

o=(100), w=(010)"

We have applied the s-stage Gauss SPARK methods for s = 1,2,3 with stepsize
h = 0.2 on the interval ¢ € [0,250]. The energy errors are plotted in Fig. 8.1 and
clearly remain bounded.

UIJXZ I’\ ["‘NIU “,\ll H] J“'I H\ ,v
0)(1()’5 P stage Gatuss SPARK

Wt '\ [ '\ " i

a '”\”'M”h‘»“\ﬂ‘““”ﬁ'h'*1‘“ nU"\'l"“ ”“‘“‘l““h ‘I“ “I'I M'“‘ IlW“ﬂ"[hj“»"'{ﬁ \“v"f'l'[‘r I ““v"‘“'{'r i W‘v"'l'“(uw ! ”’"WJ

”Ifos j’\ll“l }\; I‘ ity J H M et ikl Wi MHM ‘Mw‘p» Bt ‘JM Iyl me‘ \H‘.f"

t

F1a. 8.1. Energy error of the s-stage Gauss SPARK methods for s = 1,2, 3 applied with constant
stepsize h = 0.2 on the interval [0,250] to the nonholonomic particle.

8.2. The skate on an inclined plane. This problem can be found in [3, 30].
We consider the time-independent Lagrangian

Lig,0) =T() - U(@), T(v) = gm(e} +28) + 310, U(a) = ~mga snf5),
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with ideal scleronomic nonholonomic constraint
cos(gs)ve — sin(gs)vy =0
which is linear in v = (v1, v2,v3)T. From subsection 2.2 the energy
E(q,v) =T(v) + U(q)

is conserved. The system is reversible under the transformation R : (¢,v) — (g, —v).
As in [30] we consider the parametersm = 1,1 =1, g =1, § = /2, and the following
initial conditions at tg = 0

o=(0 0 0), w=(0o0 1)".

We have applied the s-stage Lobatto IITTA-B SPARK methods for s = 2,3,4 with
stepsize h = 0.1 on the interval ¢ € [0,100]. The energy errors are plotted in Fig. 8.2
and clearly remain bounded.

x10° 2-stage Lobatto IIIA-B SPARK
0 T
o -1 ¥
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t
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o
w
4
ui
2 -
0 1 1 1 1 1 1 1
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t
x 107 4-stage Lobatto IIIA-B SPARK
0 T
o
w
r, -05
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-1 1 1 1 1 1 1 1 1 1
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F1a. 8.2. Energy error of the s-stage Lobatto IIIA-B SPARK methods for s = 2,3,4 applied
with constant stepsize h = 0.1 on the interval [0,100] to the skate on an inclined plane.

8.3. A mobile robot with fixed orientation and a potential. This problem
can be found in [6, 7]. We consider the time-independent Lagrangian

1 1 3 .
L(g,v) =T(v) = U(q), T(v) = 5m(vf +8) + 3103 + SLued, Ulg) = 10sin(qa),
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with ideal scleronomic nonholonomic constraints
vy — Lcos(qz)ve =0, vy —€sin(gz)vy = 0,
which are linear in v = (v, va, v3, v4)T. From subsection 2.2 the energy
E(q,v) =T(v) +Ulq)

is conserved. The system is reversible under the transformation R : (¢,v) — (g, —v).
We consider the parameters m =1, [ =1, I, = 1, £ = 1, and the following initial
conditions at tg = 0

@=(0000), w=(1001)"

We have applied the s-stage Lobatto IITTA-B-D SPARK methods for s = 2, 3,4 with
stepsize h = 0.2 on the interval ¢ € [0,150]. The energy errors are plotted in Fig. 8.3
and clearly remain bounded.

2-stage Lobatto IIIA-B-D SPARK
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Fic. 8.3. Energy error of the s-stage Lobatto IIIA-B-D SPARK methods for s = 2,3,4 applied
with constant stepsize h = 0.2 on the interval [0,150] to the mobile robot with fized orientation and
a potential.

8.4. The McLachlan and Perlmutter’s particles. This chaotic problem can
be found in [25, 26]. We consider the time-independent Lagrangian

L(g,v) =T(v) = U(q)
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where ¢,v € R® with n =2m + 1, m > 2,

1 1 U
Tw):=zlvll3,  Ulg) =z | a3+ @hrotinss + D> GiriGiniari | »
2 2
1=1

with ideal scleronomic nonholonomic constraint

n
v + Z q;v; = 0,

1=m-+2
which is linear in v. From subsection 2.2 the energy
E(q,v) =T(v) + U(q)

is conserved. The system is reversible under the transformation R : (¢,v) — (g, —v).
As in [25, 26], for m = 3 (n = 7) we consider the J + 1 following initial conditions at
to =0

go=(ca; 06 04 02 1 1 1), wo=(0 8 0000 0)".

where «; = cos(jn/(2J)),5; := sin(jn/(2J)) for j = 0,...,J. For those initial
conditions the energy is independent of j and we have E(gjo,vj0) = Eo = 3.06. As
a first method we consider the 2-stage Lobatto IIIA-B SPARK method. As a second
method we consider a modified 2-stage Lobatto IIIA-B SPARK method where the
condition 0 = %Kl + %KQ is replaced by

h h
O—k<t0+§7QO+§V17V1>-

As a third method we consider McLachlan-Perlmutter’s 2-stage Lobatto IIIB-A LDA
method (7.3). For these 3 methods we consider a constant stepsize h = 0.05 and
the interval ¢ € [0,50000] for J + 1 = 10 different initial conditions on the same
energy surface Ey = 3.06. In Fig. 8.4 the quantities at tx := ty + 100kh for k =
0,1,2,...,10000

J
(= Eo)?) where (B~ o)) == s 35— 0

are plotted for the 3 methods where Eji := E(q;k,vjx). These 3 methods clearly
behave very similarly and one can say that they are all equally good for this problem.
The energy error for these 3 methods seems to follow a random walk, after time ¢
we observe that we have approximately

%N((E.k — Ey)?) = O(tg) or equivalently /u((E.x — Eo)?) = O(h*V/1y,).

9. Conclusion. For systems in mechanics with ideal nonholonomic constraints
we have defined a new discrete Lagrange-d’Alembert principle based on a discrete
Lagrange-d’Alembert principle for forced Lagrangian systems. A large class of spe-
cialized partitioned additive Runge-Kutta (SPARK) methods has been shown to sat-
isfy this principle. In particular symmetric Lagrange-d’Alembert SPARK integrators
of any order have been obtained based on Gauss and Lobatto coefficients.
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Fic. 8.4. A measure of energy error for the 2-stage Lobatto IIIA-B SPARK method, the modified

2-stage Lobatto IIIA-B SPARK method, and the McLachlan-Perlmutter 2-stage Lobatto IIIB-A LDA
method, applied with constant stepsize h = 0.05 on the interval [0,50000] to the McLachlan and
Perlmutter’s particles.
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