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Abstract

We consider the application of partitioned Runge-Kutta (PRK) methods to non-
autonomous Hamiltonian systems. Necessary and sufficient conditions for the sym-
plecticness of PRK methods are given, more particularly for two low order PRK
methods: the partitioned (explicit-implicit) Euler method and the 2-stage Lobatto
IITA-B PRK method. Both methods are often the basis of composition schemes of
higher order. In particular for irreducible PRK methods we show the necessity for the
nodes of the two underlying PRK methods to be equal.
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1 Introduction

We consider the numerical solution of non-autonomous Hamiltonian systems
qzva(t,va)v pz_qu(t’Q3p) (11)

with (¢, ¢, p) € RxR" xR" and where we assume that H € CZ(RxR"xR", R). The
time-dependent flow of such systems preserves the standard symplectic two-form

n
o= dgNdp. (1.2)
k=1
but generally not the Hamiltonian H. For such problems it has been shown in sev-
eral papers that preservation of w is a desirable property for a numerical scheme
[2,5-7, 11].
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In this paper we consider necessary and sufficient conditions for symplecticness
of partitioned Runge-Kutta (PRK) methods when applied to non-autonomous Hamil-
tonian systems (1.1). We are especially interested in some low order PRK methods.
Low order methods are often used in composition schemes to obtain higher order
methods [4, 9]. The low order methods considered in this paper are the partitioned
(explicit-implicit) Euler method (also known as the symplectic Euler method) and
the 2-stage Lobatto IIIA-B PRK method (also known as the Stormer/Verlet/leapfrog
method in various other contexts [9]). For autonomous systems the partitioned Euler
method can be obtained as a combination of the explicit and implicit Euler methods,
and the 2-stage Lobatto IIIA-B PRK method can be obtained as a combination of
the trapezoidal and midpoint rules. These PRK methods are known to be symplectic
for autonomous Hamiltonian systems. Using the matrix characterization of symplec-
ticness (2.5) we show in this note that for general non-autonomous Hamiltonian
systems (1.1) it is necessary for the nodes ¢, ¢; of these PRK methods to be equal in
order for these methods to be symplectic. Therefore, for non-autonomous Hamilto-
nian systems, the partitioned Euler method, respectively the 2-stage Lobatto IIIA-B
PRK method, cannot be obtained as a straightforward combination of the explicit
and implicit Euler methods, respectively of the trapezoidal and midpoint rules. Spe-
cial care must be taken in treating the independent time variable 7. In particular for

symplecticness the famous simplifying assumption C(1) (i.e., ijl ajj = ¢; for
i =1,...,s), cannot hold for the two underlying methods of these low order PRK
methods. We also show the necessity of the conditions ¢; = c; for j = 1,...,s

for general irreducible PRK methods satisfying b; = b; # Ofor j = 1,...,s
though the only methods of interest which a priori may not satisfy the conditions
¢j = cjfor j = 1,...,s are the partitioned Euler method and possibly the 2-
stage Lobatto IIIA-B PRK method (e.g., when considered as a combination of the
trapezoidal rule and of the midpoint rule), and composition schemes based on these
methods.

2 Partitioned Runge-Kutta methods

To ease the presentation hereafter we consider partitioned systems of ODEs

qg=f(tq,p), p=gtq,p) 2.1

with (£, ¢, p) e RxR” x R" and f € C'(R x R" x R",R™), g € C'(R x R" x
R, R™). Non-autonomous Hamiltonian systems (1.1) simply correspond to m = n
and

ft.q.p) =V,H(t,q,p), 8t q,p)=—-VH(t, q,p).
Hamiltonians of the form
H(t,q.p) =T p)+ Ut q) 2.2)
are called separable. Hence, when f (¢, q, p) = f(¢, p) and g(¢, g, p) = g(t, q) we
will call the system of ODEs ¢ = f (¢, p), p = g(t, q) separable as well.
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General partitioned Runge-Kutta methods applied to (2.1) are defined as follows,
see, e.g., [13]:

Definition 2.1 An s-stage partitioned Runge-Kutta (PRK) method with coefficients
bj,cj,aij,bj,cj,a;j for i, j = 1,...,s applied to (1.1) with initial conditions
q(to) = qo, p(to) = po, stepsize h is given by the system of equations

s s
Qi = qo +hzaijf(7j, Qj, Pj), Pi=po +h2a\ijg(5j, Qj. Pj) (2.3a)
j=1 j=1
fori=1,...,s,

s S
@1 =qo+hY bif(Tj. Q. P)). pi=po+hy bjg(S;.Q;. Py (23b)
j=1 j=1

where T ;=1 +c;hand S; := 19 +’c\jh for j =1, ..., s. The coefficients of PRK
methods can be expressed with two Butcher tableaux

Notice that when the (2.1) are disconnected, i.e., ¢ = f(¢t,q) and p = g(t, p), we
obtain two disconnected Runge-Kutta methods applied to these two distinct systems
of ODEs.

In this paper we will use the notation

R @) In 2nx2n
Jp = |:_[n O] eR

for the standard symplectic matrix. First we state sufficient conditions for a PRK
method (2.3) to be a symplectic transformation of R” x R” [13, Theorem 2.6]:

Theorem 2.1 Consider the non-autonomous Hamiltonian system (1.1) and a PRK
method (2.3). Suppose that the PRK coefficients satisfy

b =b; forj=1,....s, (2.42)
’c\j:Cj forj=1,...,s, (2.4b)
biaij +bjaji —bibj =0 fori,j=1,...,s. (2.4¢)

Then the map Pry+n,1,(q0, po) := (q1, p1) is a symplectic transformation of (R" x
R", w) into (R" x R", w) for the constant differential 2-form w =Y }_, dqx N dpx,
i.e., w is preserved by the mapping @1y 1, i.€.,

n n
> dqu Adpi =) dqo A dpok.
k=1 k=1
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In matrix form we obtain equivalently

dq1 b1 T dq1 da1
0 Po 0 Po —
opy opr | | opy op | = I 2.5

dq0 9po dq0 9dpo

Various proofs can be obtained by simple extensions of the proofs given for
autonomous Hamiltonian systems for example in [4, 9, 12, 14]. Here, we give a short
argument based on an explicit generating function.

Proof For |h| sufficiently small the map (g9, po) — (q1, p1) satisfies

Po— VoS5 (t0, g0, p) =0, g1 — V85 (10, 0, p1) =0
where Sé’ (t0, qo0, p1) is a globally defined generating function of type II given by

)
83 (t0, g0, p1) = qg pr+h Y_biH(T;, Qi, P)
i=1

S N
—h*Y "> " biaijVyH(Ti, Qi P)'V,H(T}, Qj, Pj).
i=1 j=1 O

Remark 2.1 For autonomous Hamiltonian systems, it has been shown in [8] and [9,
Theorem VI.7.10, p. 222] that the conditions (2.4a) and (2.4c) are also necessary for
irreducible PRK methods (i.e., for PRK methods without equivalent stages, which is
equivalent to a certain matrix @pgrg € R indexed by the stages and by certain
elementary differentials/trees to be of full rank s, see details in [9, VI.7.3]). The
necessity of (2.4c) was first proved in [1] for separable autonomous Hamiltonians.

Remark 2.2 The main importance in preserving symplecticness resides in the back-
ward error analysis of symplectic PRK methods: for constant stepsizes h the
numerical solution of such methods is formally equal to the exact solution of a non-
autonomous Hamiltonian system with a global perturbed Hamiltonian Hj, (¢, g, p)
depending on the stepsize /. Precise backward error analysis statements with explicit
error bounds are outside the scope of this paper. This type of results has been proved
for autonomous Hamiltonian systems [4, 9, 14].

In this paper we are particularly interested by the necessity of the conditions (2.4b)
for the partitioned Euler PRK method and the 2-stage Lobatto IIIA-B PRK method
for non-autonomous Hamiltonian systems. These two methods are important since
they can form the basis of higher order composition schemes. The combination of the
explicit Euler and of the implicit Euler method forms a PRK method with Butcher-

tableaux
0(0 1|1
1 1 (2.6)

and is known in the literature usually under the name of symplectic Euler method.
Clearly this irreducible PRK method does not satisfy ¢; = ¢} and is thus not sym-
plectic for general non-autonomous Hamiltonian systems according to Theorem 2.2
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and Theorem 3.1 hereafter. The 2-stage Lobatto IIIA-IIIB method is sometimes pre-
sented in the literature, e.g., in [9, Table I1.2.1, p. 39] and [4, p. 49], as a combination
of the trapezoidal rule with the midpoint rule, hence having Butcher-tableaux

000 O 1/211/2 0
111/2 1/2 1/2{1/2 0 .
1/2 1/2 1/2 1/2 2.7
Clearly this irreducible PRK method satisfies neither ¢; = ¢y, nor ¢ = ¢, and

is thus not symplectic for general non-autonomous Hamiltonian systems according
to Theorem 2.2 and Theorem 4.1 hereafter. Using the matrix characterization of
symplecticness (2.5), we show that the conditions (2.4b) are necessary for the sym-
plecticness of the partitioned Euler method and the 2-stage Lobatto IIIA-B PRK
method. We also give the main lines of a proof of the necessity of (2.4b) for irre-
ducible PRK methods satisfying b; = b; # 0 for j = 1,...,s. This proof is much
more technical and appeals to the results given in [9, VI.7] and [9, Theorem VI.7.10,
p- 222]. However, since very few PRK methods of interest may not satisfy the condi-
tions (2.4b), the proofs using the matrix characterization of symplecticness (2.5) for
the partitioned Euler methods and the 2-stage Lobatto IIIA-B PRK method are less
technical and easier to understand since they are only based on some matrix rela-
tions. Note that the 2-stage Lobatto IIIA-B PRK method can also be obtained as a
composition of the partitioned Euler methods, see Section 4.

One may argue that the only PRK methods of interest which may not sat-
isfy (2.4b) are the symplectic Euler method and possibly the 2-stage Lobatto
IITA-B PRK method, and any composition scheme based on those low order meth-
ods. Nevertheless, for completeness we state a general result of the necessity of
conditions (2.4b):

Theorem 2.2 Consider the non-autonomous Hgmiltonian system (1.1) and an irre-
ducible PRK method (2.3) with coefficients bj, b; for j = 1, ... satisfying

bj #0, b;#0 forj=1,...,s. (2.8)

Suppose that the map Py1p.1,(qo, po) = (q1, p1) is a symplectic transformation
for the 2-form w = Y"}_, dqi A dpi for any Hamiltonian H(t,q, p) € C*(R x
R" xR", R) for |h| sufficiently small. Then the conditions (2.4b) are necessary. When
H(t,q,p) = H(q, p) or for separable Hamiltonians (2.2) there is no necessary
conditionon c;,cj for j =1,...,s.

The main lines of a proof are given in Appendix. This Theorem 2.2 which discusses
only the necessity of the conditions (2.4b) for irreducible PRK methods is an exten-
sion to non-autonomous Hamiltonian systems of [9, Theorem VI1.7.10, p. 222] which
discusses the sufficiency and necessity of the conditions (2.4a) and (2.4c) of irre-
ducible PRK methods applied to autonomous Hamiltonian systems. As stated before
the main consequence of Theorem 2.2 is the non-symplecticness of the symplectic
Euler method and of the 2-stage Lobatto IIIA-IIIB method when the nodes are cho-
sen for example as in (2.6) and (2.7). However, simpler direct proofs of Theorem 2.2
are given for these two methods in Sections 3 and 4 respectively.
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3 The partitioned Euler methods | and I

The Butcher tableaux of the explicit Euler method and of the implicit Euler method
are given in (2.6). The two PRK methods based directly on these two methods will not
satisfy the relation (2.4b) since these methods have distinct node coefficients c; = 0
for the explicit Euler method and ¢; = 1 for the implicit Euler method (or vice-versa
c1 = 1and¢; = 0). Nevertheless, we can consider more general PRK methods by not
setting a priori the values of the nodes ¢ and ¢1. We consider 2 families of partitioned
Euler methods applied to (2.1) for various values of the parameters «, § € R (though
it makes little sense to consider values «, B outside of the interval [0, 1]) as follows:
the partitioned Euler method I (PEI)

PEL: g =qo+hf(to+ah, qo, p1), p1 = po+hg(to+pBh, g0, p1) (3.1

corresponding to the Butcher-tableaux

cir=al0 ¢ = BJ1
1 1

and the partitioned Euler method II (PEII)
PEIL: g1 =qo+hf(to+Bh,q1, po), p1 = po+hg(to+ah,qi, po) (3.2)

corresponding to the Butcher-tableaux

c1 = Bl1 1 =al0
1 1°

Notice that PEII is simply PEI where the roles of ¢ and p, respectively, f and g,
are exchanged. We observe that PEI can be interpreted as an approximate splitting
scheme of the type described in [2-5] where the time ¢ is first ‘frozen’ in ¢ = f(fo +
ah, g, p), p = 0before the explicit Euler method is applied and then frozenin g = 0,
p = gty + Bh, q, p) before the implicit Euler method is applied. An analogous
remark holds for PEII. The standard choice for the partitioned Euler methods I and II
isa = 0,8 =1, see (2.6). However, we will see in the context of non-autonomous
non-separable Hamiltonian systems that the condition @ = B is essential to preserve
symplecticness. For separable ODEs g = f (¢, p), p = g(t, g) we obtain two explicit
methodsS

PEL: p1 = po+hg(to+ Bh,q0), q1=qo~+hf(to+ah, p1),
PEIL: g1 =qo+ hf(to+ Bh, po), p1 = po+hg(to+ah,qy).

Theorem 3.1 Consider the non-autonomous Hamiltonian system (1.1) and the
partitioned Euler methods I and 11

PEL: g1 =qo+hV,H(tg+ah, qo, p1), pr=po—hVyH(to+Bh,qo, p1) (3.3)
PEIL: g1 =qo+hV,H (to+Bh, q1, po), p1=po—hVeH (to+ah, q1, po). (3.4)

Then the map Py1p.1,(q0, po) = (q1, p1) of the partitioned Euler method I (or
1) is a symplectic transformation for the 2-form w = Y ;_, dqx A dpy for any
Hamiltonian H(t, q, p) € C2(R x R" x R" R) for |h| sufficiently small if and only
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ifa = B. When H(t,q, p) = H(q, p) or for separable Hamiltonians (2.2) both
methods are symplectic without any condition on «, f.

Proof We cannot apply Theorem 2.1 when o # f since the partitioned Euler meth-
ods I and II do not satisfy (2.4b). Let us consider the partitioned Euler method I (3.3).
We have

d d
[ﬁ %} _ [ln + (@, Yy H) (1o + ah. qo. p1) 0}

d a —
1 h(@g Vg H)(to + B, o, 1) In

O —h(3,V4H)(to + Bh, qo, p1) Op1

apy
which can be reexpressed as

0 0
+[0 h(8,V , H)(to + ah. o, p1) ][% %}

D1

aq0

q

991 3q1
dqo dpo | —
A 1 1 | T B
dq0 9po
where

Ao [ —h@VpH) o+ ah, g0, p1)
0 I, +h(3quH)(f0+ﬂh,(I0,Pl) ’

B |:In + h(3,V,H)(to + ah, g0, p1) O } ‘
—h(9,VqH) (o + Bh, q0, p1) In

For the symplecticness conditions we have

1 dpy 1 1

dq1 g T dq1 9q1
9do apo | g 940 dpo | = = (AT'B)J,ATIB =1,
dqo0 Ipo dgo  dpo

— A TpA'=BTy,B7".

By inverting the last relation and from Jn_1 = —J, we obtain AJ,AT = BJ,BT. We
easily get
AJ ATI 0 Iﬂ+h(aqva)(t0+ﬁhv q01 pl)
" _In_h(apqu)(t0+/3h: q0, Pl) 0 ’
" —1I,—h(3,VyH)(to + ah, qo, p1) o '
Hence, the condition AJ,A” = BJ,BT is clearly satisfied for any Hamiltonian

H(t,q, p)ifandonlyifa = 8. When H(¢, g, p) = H(q, p) or (0,V,H)(t,q, p) =
0 we always have AJ,A” = BJ, BT without any condition on «, 8. The proof for
the partitioned Euler method II (3.4) can be obtained in a similar fashion. O]

For a general non-autonomous Hamiltonian system we propose the choice ¢ =
€1 = 1/2 which together with by = by = 1 corresponds to the quadrature formula
given by the midpoint rule. Even for ODEs y = f (¢, y) the version of the explicit
Euler method with ¢; = 1/2 has the advantage of integrating polynomials p(¢) of
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degree at most one exactly whereas with ¢; = 0 only constants are integrated exactly.
A similar remark holds for the implicit Euler method. The Butcher-tableaux of these
modified explicit and implicit Euler methods read as follows

1/2]0 1/2]1
1 T

We actually recommend using both the explicit Euler method and the implicit Euler
method with a node equal to 1/2 even for general non-autonomous systems of ODE:s.
We are not aware of such a recommendation for these two methods elsewhere in the
literature. Our analysis has thus shed a new light on these two basic methods.

4 The 2-stage Lobatto IlIIA-B PRK method

The Butcher-tableaux of coefficients of the s = 2-stage Lobatto IIIA-B PRK method
of order 2 are given by

0l o o 012 0
11/2 12 1112 0

Al1/21/2 B|1/2 1/2 4.1

The coefficients of the 2-stage Lobatto IIIA and IIIB methods are based on the
quadrature formula given by the trapezoidal rule and are defined through some
so-called simplifying assumptions, see [10, Chapter IV.5].

The coefficients of this method are easily shown to satisfy the sufficient condi-
tions (2.4) for symplecticness of Theorem 2.1. This method applied to (2.1) reads as
follows:

Q1 =qo,

Or=qo+h <%f(T1, 01, P1) + %f(Tz, 02, Pz)> ,
P1=po +h%g(T1, 01, P),

P2=P0+h%g(T1, 01, Pp),

gi=qo+h <%f(T1, 01, P1) + %f(Tz, 02, Pz)) ,

1 1
pr=po+h (Eg(Tl, 01, P1) + zg(Tz, 0>, Pz)) ,

where

Ty:=t, Th:=to+h, t:=t+h
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From Th = 19, Q1 = q0, T» = t1, Q2 = q1, P> = Py, and denoting p12 := P = P,
this method can be simplified to

1
P12 = po+ hzg(to, q0, P1/2), (4.2a)
1 1
q1=qo+h (Ef(to, q0, p1/2) + Ef(th qi1, P1/2)> , (4.2b)
1
p1=pip2+ hzg(tl 2 q1s P1/2)- (4.2¢)

The equations for pi,, and g are implicit. This method is also known under
the names of Stormer/Verlet/leapfrog method depending on the context. Of course
one can exchange the roles of ¢ and p, respectively f and g, to obtain another
nonequivalent version of the Stormer/Verlet/leapfrog method

1
Q1/2=tI0+h§f(to,Q1/2,Po), (4.3a)
1 1
pr=poth <§g(to, q1/2, po) + 58017‘11/2, Pl)) ) (4.3b)
1
q1 =611/2+h§f(f1,611/2, P1) (4.3¢)

which could be named as the Stormer/Verlet/leapfrog method II and which formally
corresponds to a 2-stage Lobatto IIIA-B PRK method applied to (2.1) where the roles
of ¢ and p, respectively, f and g, are exchanged. We will not explicitly consider this
method (4.3) hereafter, completely similar results to the ones presented below for
(4.2) hold for the method (4.3) as well.

The method (4.2) (denoted pp,) can also be interpreted as the composition of the
partitioned Euler method I (3.1) with stepsize #/2 and a; = B; = 0 (denoted Py, /7)
and of the partitioned Euler method II (3.2) with stepsize h/2 and B;; = a;; = 1
(denoted Py, 2), i.e., pp = Pp/2 o Py 2 since we get for pj

h
q12 =qo + Ef(lo, q0, P1/2),

h
pij2=po+ Eg(to, q0, P1/2),
h h h
q1 =q12+ Ef(fl/z +h/2,q1, p1j2) = q0+5f(to, q0, p1/2) + Ef(fl, q1, p1)2),

h h
p1=pip+ 58@1/2 +h/2,q1, p1j2) = p12 + Eg(tla q1, p1/2),
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leading to (4.2). This gives an alternative proof to its symplecticness for
non-autonomous Hamiltonian systems (1.1), see Theorem 3.1, since the par-

titioned Euler methods I and II have their node coefficients satisfy oy = gy
and B;; = oy here. For separable Hamiltonians (2.2) we obtain an explicit
method

1
P12 = po — h—VqU(to, q0),
1
q1 —610+h< VT (to, P1/2)+ =V T(f1,P1/2)>

1
P1= P12 — hEVqU(tl,q1)~

It has the advantage to require one evaluation of the function V, U (¢, q) per step since
the value V,U (t1, 1) can be reused for the next step. For general nonautonomous
Hamiltonian systems we have the following result:

Theorem 4.1 Consider non-autonomous Hamiltonian systems (1.1) and the modi-
fied 2-stage Lobatto IlIA-B PRK method

1 ~
p1/2=PO_hEVqH(tO"‘Clh»QO’Pl/Z)v (4.4a)

1
q —610+h< VpH (ty + c1h, qo, p1/2)+ V pH(to + c2h, q1, p1/2))
(4.4b)

1 ~
P1=Dpi)2— hEVqH(tO +h, q1, p172), (4.4¢)

corresponding to a modified 2-stage Lobatto IIIA-B PRK method with coefficients

a0 0 ali2 o
e|1/2 1/2 512 0

172 1/2 1/2 1/2 (4.5)

where the nodes c1, ¢, C1, 3 are free. Then the map Dio+h,10(q0, po) == (q1, p1) isa
symplectic transformation for the 2-form @ := Y _;_, dqi A dpx for any Hamiltonian
H(t q, p) € C2(R x R" x R™, R) for |h| sufficiently small if and only if ¢, = ¢ and
Cy = c3. When H(t,q, p) = H(q, p) or for separable Hamiltonians (2.2) there is
no condition on cy, ca, C1, Ca for symplecticness.

Proof One can interpret the method (4.4) as the composition of the partitioned Euler
method 1 (3.3) with stepsize h/2 and oy = 2c1, B; = 2c; and of the partitioned
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Euler method 11 (3.4) with stepsize h/2 and B;; = 2¢; — 1, a7 = 2¢; — 1. Denoting
hp =t + h/2, we have

h
q12=qo0 + Eva(to +arh/2, q0, p172),
h
P12 = po — EVqH(to + Bih/2, g0, p12),
h
g =q 2+ Eva(tl/Z + Biih/2q1, p1)2),

h
=pip— EVqH(h/z +arrh/2, q1, p172)

which corresponds to the PRK method with Butcher-tableaux (4.5) and nodes
ar I+ B o B o 1+O£11

cl = 77 2 B ) 1= 75 ) = )
We have
<3(6]1,p1)> _ ( (g1, p1) ) (3(41/2,1?1/2))
9(qo0, po) 9(q1/2, P12) d(qo, po)
and
(8(q1/2 p1/2)> B, A2< a(q1, p1) >=Bz
(g0, po) ’ 3(q1/2, p1/2)
where
A = [ 1, 2(3 VpH)(to + arh/2, qo, p1/2) }
L O I+ %3,V H)(to + B1h/2, qo, p1)2)
B = [ I, + 50,V H)(to + arh/2, q0. p172) 0}
' z(aqv H)(to + Brh/2, q0, p1/2)

Ay o [ I 3@V ED@ 2+ Brih/2. g1, pry2) 0}
’ B@gVeH) (12 +arrh/2.q1. p12)  In]’

[ 1, 5(3prH)(t1/z + Brih/2, q1, p12) }
| O I, — %(3quH)(t1/2 +arrh/2, q1, p1y2)

For symplecticness we have the equivalent conditions
g1, p)\' (01,
( (q1 p1)> Jn( (g1 p1)> _J
(4o, o) (g0 po)
(AT'BDT (A B 1o (A ' BO(AT'B) = Ty =
AT'B1,BTATT = BS 1AL 0, AT BT (4.6)

By =

When «; = By and B;; = oy we have

AT'B g, Bl AT = 0, = By ' A2 0, AT BT,
see the proof of Theorem 3.1. This also holds without any condition on «j, fy,
Bri,orr when H(t,q, p) = H(q, p) or for separable Hamiltonians (2.2). When

oy # B the value of
AT'BJ, BT ATT
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generally depends in particular on the values of (3,V,H)(to + a;h/2, qo, p1/2) and
of (0, V,H)(to + B1h/2, qo, p1/2) whereas when 87 # ay; the value of

By ' A2 0, AT By T

generally depends in particular on the values of (9;V,H)(t12 + Brih/2, q1, p1/2)
and of (0, VpH)(t12+ay1h/2, q1, p12). Hence, it is intuitively clear that we cannot
have the equality (4.6) in general for non-separable non-autonomous Hamiltonians
H (¢, q, p). We can obtain a simple counterexample by considering the Hamiltonian
H(t,q, p) :=2tgp for (t,q, p) € R x R x R and we get

0 1+h(to+arh/2)
=1 T A-T T+h m2
Al B]JnBl Al = |:_1+h(t0+alh/2) +h(to+B1 /):|’
1+h(to+B1h/2)
1 T T 0 i*Z(foJr(}Jrﬂu)Z/%)
BZ AZ-InAz BZ = _l—h(lo+(l+ﬂ[1)h/2) - (t()+(0+0(”) /2)
1=h(to+(1+ay)h/2)

The rational functions

1+ h(to+arh/2) l—h(to+ A+ Bih/2)
1+ h(to+ Brh/2)’ 1—h(to+ A +ar)h/2)

are not equal for arbitrary values of 7y and 7 when «; # B; or Br; # . Therefore
the conditions «; = B; and B;; = o are also necessary for symplecticness, leading
to the necessity of the relations ¢; = ¢; and ¢; = ¢;. O

Remark 4.1 An analogous theorem holds for a similar modification of the
Stormer/Verlet/leapfrog method II (4.3).

From Theorem 4.1 we see that there exists a symplectic extension of the 2-stage
Lobatto IIIA-B method for non-autonomous Hamiltonian systems satisfying ¢ =
1/2,¢ = 1/2, it must satisfy ¢; = ¢ = 1/2, ¢ = ¢ = 1/2 and corresponds to the
following Butcher-tableaux of coefficients

120 0 1/21/2 0
1/21/2 172 1/2[1/2 0
1/2'1/2 1/2.1/2 4.7)

the second method being equivalent to the midpoint rule. This method applied to
(2.1) reads

1
P12 =Po+h§g(t1/2,610,171/2), (4.8a)
1 1
g =qo+h (Ef(tl/Za q0, p12) + Ef(tl/z’ q1, Pl/z)) , (4.8b)
1
D1 =P1/2+h§g(l1/2,611,p1/2), (4.8¢)
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and for separable problems we obtain

1
P12 =po+ hzg(tl/z, q0),
q1 =qo + hf(ti)2, p1y2),

1
pP1=pip+ hig(fl/z, q1).

It has the disadvantage that it requires two evaluations of the function g(¢, q) per
step since the value g(t1/2, q1) cannot be reused for the next step. Notice that the
coefficients of the 2-stage Lobatto IIIA-B method given in [9, Table I1.2.1, p. 39]
and [4, p. 49], see (2.7), satisfy ¢y = 0,¢c, = 1 and¢; = 1/2,¢, = 1/2, hence
according to Theorem 4.1 the corresponding method is not symplectic for general
non-autonomous Hamiltonian H (z, ¢, p). Notice that any choice of ¢i, ¢z, ¢, ¢3 in
(4.5) satisfying co = 1 — ¢1, ¢ = 1 — ¢} gives a symmetric method of order 2. Any
other choice of those coefficients leads to a method of order 1.

5 Extended autonomous Hamiltonian systems
By introducing two additional variables u# and s, the non-autonomous Hamiltonian

system (1.1) can be expressed as an extended autonomous Hamiltonian system for
the augmented variables (g, u), (p, s) with extended autonomous Hamiltonian

H(g,u, p,s):=H(s,q, p) —u, 5.1

giving
qg=VyH(q,u, p,s)=V,H(s,q, p), (5.2a)
dsz(Qyu,P,s):Ht(s,va)v (5'2b)
I":_VqH(C],M, p,S) = _qu(Sv q, p)a (520)
s=—Hy(q,u, p,s)=1. (5.2d)

The extended Hamiltonian #H(q, u, p,s) (5.1) is a first integral of the extended
autonomous Hamiltonian system (5.2) and thus remains constant along trajectories.
The flow of the extended Hamiltonian system (5.2) preserves the extended symplectic
two-form

n
0=y dqi Adpi +du Ads. (5.3)
k=1

The variable u is independent from the rest of the equations and has thus no
influence on the other variables. We have u(t) = H(s(t),q(t), p(t)) + Const
along solutions of (5.2). Given initial conditions (qo, ug, po, So) at typ we have
Hg@),u(), pt),s)) = H(qo, uo, po,So) along the corresponding solution.
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Moreover, for ug := H (so, qo, po) we obtain H(g(t), u(t), p(t), s(¢)) = 0 along the
solution. To have s(¢) = ¢t we must choose sg := fg. The two-form

n
> dai Adpi+dH(t.q. p) Adt (5.4)
k=1

is thus preserved in R x R” x R" by the non-autonomous flow of (1.1). From
Stokes’ Theorem this corresponds to the preservation of the Poincaré-Cartan integral
invariant

n

f > pedqi — H(t, . p)dt
Y

k=1

along closed curves y € R x R" x R".

We consider the extended autonomous Hamiltonian (5.1) with initial conditions
(g0, 1o, po, so) at to. Applied to the corresponding extended autonomous Hamilto-
nian system (5.2) with these initial conditions, we consider PRK methods given by

N N
Qi =qo +hzaijva(Tja Qj, Pj), Pi=po— hZ@quH(Sj, 0Q;, Pj),
j=1 j=1
(5.5a)
T, =so+cih, S;=s0+7Ch fori =1,...,s, (5.5b)

N N
qr=qo+hY _ bjV,H(T;, Q;. Pj). pi=po—h) bjVeH(S;.Qj. P),
j=1 j=1
(5.5¢)

N
wy=uo+ Y biH/(Tj. Q;. Pj), s1=s0+h, (5.5d)
j=1

where the variable s is treated like the independent time variable ¢ in (2.3). For sg = #
PRK methods (5.5) satisfying

s
Z@j:a:c; fori=1,...,s, (5.6)
j=1

are equivalent to PRK methods (2.3) applied to the non-autonomous Hamiltonian
system (1.1) with the additional equation for u;. By Theorem 2.1 PRK methods
(5.5) satisfying the conditions (2.4) and (5.6) are thus symplectic for the extended
Hamiltonian system (5.2), i.e., they preserve the extended two-form (5.3).

However, for PRK methods that do not satisfy (5.6) but (2.4b) such as the parti-
tioned Euler methods I (3.1) and II (3.2) with ¢} = ¢ # 1, and the modified 2-stage
Lobatto IIIA-B PRK method (4.4)—(4.5) withc] = ¢; # 1/2 and ¢; = ¢p # 1/2,
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we cannot conclude directly under the assumptions (2.4) that the extended two-form
(5.3) is preserved. This is the subject of the following theorem:

Theorem 5.1 Consider the extended autonomous Hamiltonian system (5.2) and PRK
methods (5.5a) satisfying the assumptions (2.4). Then the map Yy, (qo, 1o, po, o) :=
(q1,u1, p1,81) is a symplectic transformation of (R R+l n) into (R %
R™*1 ) for the constant two-form n (5.3), i.e., n is preserved by the mapping V.

Proof The proof given here is analogous to the one given for Theorem 2.1. For |A|
sufficiently small the map (qo, uo, po, So) — (q1, U1, p1, 1) satisfies
20 — VoS (g0, uo, p1,s1) =0, 50 — duo S2(qos o, p1, s1) = 0,
q1 — Vp, S2(qo, uo, p1,51) =0, uy — s, S5(qos uo, p1,s1) =0
where Sé’ (qo, 1o, p1, s1) is a globally defined generating function of type II given by

S
$3(qo, o, p1. 1) = qq pi +uosi +h Y_bi(H(Si, Qi, P) — Up)
i=1
N N
—h? Zzbiaij(qu(Si: 0i, PY'V,H(S}, 0}, P))
i=1 j=1
-0, H (S}, Qj, Pj))

and where to (5.5) we add

N
Ui=uo+ Y aijH(Tj, Q;. P)) fori=1,...s.
j=1 O

As another possibility, by introducing the additional variables r, w, the non-
autonomous Hamiltonian system (1.1) can be expressed equivalently as another
extended autonomous Hamiltonian system for the augmented variables (g, r), (p, w)
with extended autonomous Hamiltonian

H(g.r, p.w) = H(g, —w, p,r) = H(r,q, p) + w (5.7)
giving
G=VyH(g.r, p.w) = V,H(r.q. p). (5.82)
F=Hy(qg,r,pw) =1, (5.8b)
p=-V,H(g,r, p,w)=—-V,H(r q, p), (5.8¢)
w=—H(q.r, p.w) = H(r,q, p). (5.8d)

The extended Hamiltonian ﬁ(q, r, p,w) (5.7) is a first integral of the extended
Hamiltonian system (5.8) and thus remains constant along trajectories. The flow of
the extended Hamiltonian system (5.8) preserves the extended symplectic two-form

n
Zko ANdpr +dr Adw.
k=1
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The variable w is independent from the rest of the equations and has thus
no influence on the other variables. We have w(t) = —H(#(t),q(t), p(t)) +
Const along solutions. Given initial conditions (qo, ro, po, wo) at fp we have
Hig(@®),r (), p(t), w()) = H(qo, ro, po, wo) along the corresponding solution.
Moreover, for wg := —H (rg, qo, po) we obtain H(q(t), r(t), p(t), w(t)) = 0 along
the solution. To have r(¢) = t we must choose rg := 1.

6 Numerical experiments

For PRK methods satisfying (2.4a) and (2.4c), the condition (2.4b) only matters for
non-autonomous non-separable Hamiltonians. Hence, to illustrate the relevance of
(2.4b) we will consider non-separable Hamiltonians. Starting from an autonomous
Hamiltonian system

q=VpH(q.p). p=-V4H(q.p), (6.1)

we consider differential equations for the differences Q(¢) := ¢q(¢) — b(t), P(¢) :=
p(t) — a(t) for some functions (b(t), a(t)) € R" x R”

0 = V,H(Q+b(t), P+a(t))—b(t), P = —V,H(Q+b(t), P+a(t))—a(t). (6.2)
This forms a non-autonomous Hamiltonian system for (Q, P) with Hamiltonian
K(t, Q. P):=H(Q +b(t), P+a®)+ Q"at) — PTh() (6.3)
as can be directly verified. The quantity
I(t,Q,P):=H(Q+b(t), P+a@) =K, Q, P)— Q" att)+ PTh(t) (6.4)

is a first integral of this non-autonomous Hamiltonian system since its Lie derivative
vanishes

1(t, Q, P)+dol(t, 0, P)VpK(t, Q, P) +dpl(t, Q, P)(=VoK(t, O, P))
VyH(Q +b(1), P +a() b(t) + V,H(Q +b(1), P +a()) a()

+V, H(Q +b(t), P+a) (VH(Q +b(1), P+ a(t)) — b(1))

+V,H(Q +b(1), P +a@) (=V,H(Q +b(1), P +a(t)) — a(1))

=0,

i.e., the quantity H(Q(t) + b(¢), P(t) + a(t)) remains constant along any solution
(t, Q(t), P(t)). Applying various methods to non-autonomous Hamiltonian sys-
tems with Hamiltonian K (¢, Q, P) as in (6.3) constitutes a simple test to show the
relevance of the necessity of conditions (2.4b) when the Hamiltonian H (g, p) is non-
separable. We consider the non-autonomous Hamiltonian system (6.2) corresponding
to a non-autonomous Hamiltonian K (¢, Q, P) (6.3) based on the non-separable
Hamiltonian

1 1 . 1
H(q1, p1) = 5”12 — cos(q1) + ¢ sin(2q1) (1 + Zm) (6.5)
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and the functions (b1(¢), a;(¢)) := (cos(t), sin(¢)). This Hamiltonian is a simple
non-separable perturbation sin(2q1) p1/20 of the separable Hamiltonian given in [9,
p- 379]. We consider the initial conditions (Q1(0), P1(0)) := (-1, 2.5).

Using a constant stepsize 7 = 0.005 on the interval [0, 500] we have applied
100000 steps of the partitioned Euler method PEI (3.3) for various choice of the
coefficients c; = e and¢; = B:a = B =1/2,a = B = 1,0 = B = 02,
and ¢ = 0 # B = 1 (the standard partitioned Euler method (2.6)). In Fig. 1 we
have plotted the errors in the invariant 7 (¢) := H(Q(t) + b(t), P(¢t) 4+ a(t)) for all
four methods. We observe that the error in this invariant oscillates around zero for
the first three symplectic methods satisfying ¢; = c1, but that there is a drift in the
error for the fourth non-symplectic one (the standard partitioned Euler method (2.6))
satisfying ¢} # cy.

We now turn our interest to the modified 2-stage Lobatto IIIA-B method (4.4) for
a few choices of the coefficients ¢y, ¢z, €1, ¢, all satisfying the symmetry conditions
co=1—c;, 2 =1—71. When ¢; = ¢; and ¢ = ¢> the method is symplectic
for both the standard symplectic two-form w (1.2) and the extended symplectic two-
form 7 (5.3). Otherwise the method is in general not symplectic for @ and certainly
also not for 1. Using a constant stepsize &4 = 0.05 on the interval [0, 5000] we have
applied 100000 steps of the standard 2-stage Lobatto IIIA-B method (4.1), i.e., (4.4)
with ¢y = ¢ = 0, co = ¢; = 1, the modified 2-stage Lobatto IIIA-B method (4.7)
ie., (4.4) withc; =¢1 = 1/2, ¢ = ¢» = 1/2, the modified 2-stage Lobatto IIIA-B
method (4.4) with c; =¢1 = 0.2, ¢; = ¢ = 0.8, and the modified 2-stage Lobatto
IIA-B method (4.4) withc; = 0,¢c; = land¢; = 1/2 # ¢1,¢2 = 1/2 # ¢3. In
Fig. 2 we have plotted the errors in the invariant 7 (t) := H(Q(t) +b(t), P(t)+a(t))
for all four methods. We observe that the error in this invariant oscillates around zero
for the first three symplectic methods satisfying ¢} = c1, ¢z = ¢, but that there is a
drift in the error for the fourth non-symplectic method satisfying ¢ # cy, ¢3 # c».

0 50 100 150 200 250 300 350 400 450 500

o 50 100 150 200 250 300 350 400 450 500

Fig. 1 Error in the invariant / (t) := H(Q(t) + b(t), P(t) + a(t)) for partitioned Euler methods PEI (3.3)
applied to (6.2) with H of (6.5)

@ Springer



Numerical Algorithms

[ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t
a=0=1/2,ca=0=1/2

L |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

il L L
) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t
g =0,=1,0=1/2#c,=1/2#c¢

001
w5 0005
| 0
S -0.005
001 L 1 L L | |
4 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t

Fig.2 Error in the invariant 7 (¢) := H(Q(¢) + b(t), P(t) + a(t)) for modified Lobatto IIIA-B methods
(4.4) applied to (6.2) with H of (6.5)

7 Conclusion

We have shown the necessity for the nodes c;, ¢; of symplectic irreducible PRK
methods to satisfy the conditions ¢; = ¢; fori = 1,...,s when applied to non-
autonomous non-separable Hamiltonian systems. These conditions are especially
relevant to the partitioned Euler method and the 2-stage Lobatto IIIA-B method.
We have illustrated numerically the relevance of these conditions on a simple
Hamiltonian system.

Acknowledgements The author would like to thank the anonymous referees for their constructive
criticisms which helped improve the clarity of the paper.

Appendix: Main lines of a proof of Theorem 2.2

To prove the necessity of conditions (2.4b) we have assumed that the PRK method
is irreducible in the sense given in [9, VI.7] and [9, Theorem VI.7.10, p. 222]. A
reducible PRK method is defined as a method having equivalent stages (Q; = Q;
and P; = Pj fori # j). We have also added the condition (2.8), i.e., that no index
i exists where b; = 0 and b; = 0. This eliminates methods having stages that have
no influence on the numerical solution g1, p; similar to the DJ-irreducibility of RK
methods [10, Definition 12.15]. This is justified as follows. We already know that
the conditions (2.4a), and (2.4c) are necessary for symplecticness. Assuming that
there is an index i such that b = 0 or b; = 0, supposed to be unique for now,
from the necessary conditions (2.4a) and (2.4c) we then obtain b; = 0, b; = 0,
aji = 0, and Zz},- = 0for j € {1,...,s}\{i}. Hence, clearly in this situation the
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internal stages Q;, P; will not influence the solution g1, p; and the other internal
stages Qj, P; for j # i. If there is more than one index i with b; = 0 and E =0,
then one can easily show that all those internal stages can only influence each other,
but they can influence ngjther the solution g1, p1, nor the other internal stages Q ;, P
with coefficients b; = b; # 0. With that additional assumption (2.8) one is then in
position to prove the necessity of (2.4b).

Proof We can extend the sets of trees considered in [9, VI.7] and [9, Theorem
VIL.7.10, p. 222] by having an extra type of nodes, say grey nodes, standing for the
value 1 of the scalar differential equation f = 1. We use the notation and defini-
tions given in [9] though we exchange the role of ¢ and p and f and g. No node is
attached on top of a grey node since the partial derivatives of a constant vanish. A
branch leading to a grey node stands for a partial differentiation with respect to ¢. For
the order conditions of partitioned methods, grey nodes need not be indexed. When
a grey node follows a black node with index j, then the sum in the order conditions
over the index j = 1, ..., s must contain the coefficients c¢;. When a grey node fol-
lows a white node with index j, then the sum in the order conditions over the index
j = 1,...,s must contain the coefficients 'EJ Consider a P-series with coefficients
a(u)
( S erp, Asa) F @) (to, qo. po) )
Y et p, Ly @) F @)1, 9o, po)

For a P-series to be symplectic one of the necessary conditions for autonomous
Hamiltonian systems is to have

a(u) is independent of the color of the root of u.

The same necessary condition holds for non-autonomous Hamiltonian systems for
trees also containing grey nodes. This can be easily shown on a similar example given
in the proof of [9, Theorem VI1.7.4, p. 217] where the top black node of the tree u is
replaced by a grey node. For that tree we take

H(t,q,p) =q'p*p’q* + ¢t + p*
and for that Hamiltonian we get
F2w)(t,q, p) = —D*Wo@)q',  F'G)(, q, p) = (—1)°Wo(u)p?

where u is the tree obtained from u by replacing its black root with a white root.
These elementary differentials are the only contribution to

T
a(q1, p1) a(q1, p1)
1 In 2
g, apg
and we get

T
0= (53(6]1—1171)) 7, (3(611—2p1)> = (=1)°’@nla(u) — a@)).
9q, apy

Now to prove our statement we can consider the same PRK matrix @ pgg as given
in [9, VLI.7] and [9, Theorem VI.7.10, p. 222], we do not even need to consider trees
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with grey nodes in that matrix. We define the vector d € R’ with elements d; :=

bic; — bi’c\’,-\ fori = 1,...,s. For irreducible PRK methods we already know that the
condition b; = b; fori = 1, ..., s is necessary for symplecticness, hence we obtain
d;i = b;j(c; —¢;)fori =1,...,s. The vector d satisfies

d"®prx =0

since d” ¢ (u) = a(v) — a(v) where v is obtained from u by appending a grey node
to its root and a(v) = a(v) for v € T P, as seen above. Since the matrix @ prg is of
maximal rank s we must have d = 0, hence its components satisfy d; = b;(¢c; —¢;) =
Ofori =1,...,s.Since b; #0fori =1,...,s we obtain (2.4b). O
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