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Abstract
We consider the application of partitioned Runge-Kutta (PRK) methods to non-
autonomous Hamiltonian systems. Necessary and sufficient conditions for the sym-
plecticness of PRK methods are given, more particularly for two low order PRK
methods: the partitioned (explicit-implicit) Euler method and the 2-stage Lobatto
IIIA-B PRK method. Both methods are often the basis of composition schemes of
higher order. In particular for irreducible PRK methods we show the necessity for the
nodes of the two underlying PRK methods to be equal.

Keywords Hamiltonian systems · Non-autonomous ·
Partitioned Runge-Kutta methods · Symplecticness

1 Introduction

We consider the numerical solution of non-autonomous Hamiltonian systems

q̇ = ∇pH(t, q, p), ṗ = −∇qH(t, q, p) (1.1)

with (t, q, p) ∈ R×R
n×R

n and where we assume thatH ∈ C2(R×R
n×R

n,R). The
time-dependent flow of such systems preserves the standard symplectic two-form

ω =
n∑

k=1

dqk ∧ dpk, (1.2)

but generally not the Hamiltonian H . For such problems it has been shown in sev-
eral papers that preservation of ω is a desirable property for a numerical scheme
[2, 5–7, 11].
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In this paper we consider necessary and sufficient conditions for symplecticness
of partitioned Runge-Kutta (PRK) methods when applied to non-autonomous Hamil-
tonian systems (1.1). We are especially interested in some low order PRK methods.
Low order methods are often used in composition schemes to obtain higher order
methods [4, 9]. The low order methods considered in this paper are the partitioned
(explicit-implicit) Euler method (also known as the symplectic Euler method) and
the 2-stage Lobatto IIIA-B PRK method (also known as the Störmer/Verlet/leapfrog
method in various other contexts [9]). For autonomous systems the partitioned Euler
method can be obtained as a combination of the explicit and implicit Euler methods,
and the 2-stage Lobatto IIIA-B PRK method can be obtained as a combination of
the trapezoidal and midpoint rules. These PRK methods are known to be symplectic
for autonomous Hamiltonian systems. Using the matrix characterization of symplec-
ticness (2.5) we show in this note that for general non-autonomous Hamiltonian
systems (1.1) it is necessary for the nodes cj , ĉj of these PRK methods to be equal in
order for these methods to be symplectic. Therefore, for non-autonomous Hamilto-
nian systems, the partitioned Euler method, respectively the 2-stage Lobatto IIIA-B
PRK method, cannot be obtained as a straightforward combination of the explicit
and implicit Euler methods, respectively of the trapezoidal and midpoint rules. Spe-
cial care must be taken in treating the independent time variable t . In particular for
symplecticness the famous simplifying assumption C(1) (i.e.,

∑s
j=1 aij = ci for

i = 1, . . . , s), cannot hold for the two underlying methods of these low order PRK
methods. We also show the necessity of the conditions ĉj = cj for j = 1, . . . , s
for general irreducible PRK methods satisfying b̂j = bj �= 0 for j = 1, . . . , s
though the only methods of interest which a priori may not satisfy the conditions
ĉj = cj for j = 1, . . . , s are the partitioned Euler method and possibly the 2-
stage Lobatto IIIA-B PRK method (e.g., when considered as a combination of the
trapezoidal rule and of the midpoint rule), and composition schemes based on these
methods.

2 Partitioned Runge-Kutta methods

To ease the presentation hereafter we consider partitioned systems of ODEs

q̇ = f (t, q, p), ṗ = g(t, q, p) (2.1)

with (t, q, p) ∈ R × R
m × R

n and f ∈ C1(R × R
m × R

n,Rm), g ∈ C1(R × R
m ×

R
n,Rn). Non-autonomous Hamiltonian systems (1.1) simply correspond to m = n

and

f (t, q, p) = ∇pH(t, q, p), g(t, q, p) = −∇qH(t, q, p).

Hamiltonians of the form

H(t, q, p) = T (t, p) + U(t, q) (2.2)

are called separable. Hence, when f (t, q, p) = f (t, p) and g(t, q, p) = g(t, q) we
will call the system of ODEs q̇ = f (t, p), ṗ = g(t, q) separable as well.
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General partitioned Runge-Kutta methods applied to (2.1) are defined as follows,
see, e.g., [13]:

Definition 2.1 An s-stage partitioned Runge-Kutta (PRK) method with coefficients
bj , cj , aij , b̂j , ĉj , âij for i, j = 1, . . . , s applied to (1.1) with initial conditions
q(t0) = q0, p(t0) = p0, stepsize h is given by the system of equations

Qi = q0 + h

s∑

j=1

aij f (Tj , Qj , Pj ), Pi = p0 + h

s∑

j=1

âij g(Sj , Qj , Pj ) (2.3a)

for i = 1, . . . , s,

q1 = q0 + h

s∑

j=1

bjf (Tj , Qj , Pj ), p1 = p0 + h

s∑

j=1

b̂j g(Sj , Qj , Pj ) (2.3b)

where Tj := t0 + cjh and Sj := t0 + ĉj h for j = 1, . . . , s. The coefficients of PRK
methods can be expressed with two Butcher tableaux

Notice that when the (2.1) are disconnected, i.e., q̇ = f (t, q) and ṗ = g(t, p), we
obtain two disconnected Runge-Kutta methods applied to these two distinct systems
of ODEs.

In this paper we will use the notation

Jn :=
[

O In

-In O

]
∈ R

2n×2n

for the standard symplectic matrix. First we state sufficient conditions for a PRK
method (2.3) to be a symplectic transformation of Rn × R

n [13, Theorem 2.6]:

Theorem 2.1 Consider the non-autonomous Hamiltonian system (1.1) and a PRK
method (2.3). Suppose that the PRK coefficients satisfy

b̂j = bj for j = 1, . . . , s, (2.4a)

ĉj = cj for j = 1, . . . , s, (2.4b)

b̂iaij + bj âji − b̂ibj = 0 for i, j = 1, . . . , s. (2.4c)

Then the map Φt0+h,t0(q0, p0) := (q1, p1) is a symplectic transformation of (Rn ×
R

n, ω) into (Rn ×R
n, ω) for the constant differential 2-form ω := ∑n

k=1 dqk ∧ dpk ,
i.e., ω is preserved by the mapping Φt0+h,t0 , i.e.,

n∑

k=1

dq1k ∧ dp1k =
n∑

k=1

dq0k ∧ dp0k .
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In matrix form we obtain equivalently
[

∂q1
∂q0

∂q1
∂p0

∂p1
∂q0

∂p1
∂p0

]T

Jn

[
∂q1
∂q0

∂q1
∂p0

∂p1
∂q0

∂p1
∂p0

]
= Jn. (2.5)

Various proofs can be obtained by simple extensions of the proofs given for
autonomous Hamiltonian systems for example in [4, 9, 12, 14]. Here, we give a short
argument based on an explicit generating function.

Proof For |h| sufficiently small the map (q0, p0) �→ (q1, p1) satisfies

p0 − ∇q0S
h
2 (t0, q0, p1) = 0, q1 − ∇p1S

h
2 (t0, q0, p1) = 0

where Sh
2 (t0, q0, p1) is a globally defined generating function of type II given by

Sh
2 (t0, q0, p1) := qT

0 p1 + h

s∑

i=1

biH(Ti, Qi, Pi)

−h2
s∑

i=1

s∑

j=1

biaij∇qH(Ti, Qi, Pi)
T ∇pH(Tj , Qj , Pj ).

Remark 2.1 For autonomous Hamiltonian systems, it has been shown in [8] and [9,
Theorem VI.7.10, p. 222] that the conditions (2.4a) and (2.4c) are also necessary for
irreducible PRK methods (i.e., for PRK methods without equivalent stages, which is
equivalent to a certain matrix ΦPRK ∈ R

s×∞ indexed by the stages and by certain
elementary differentials/trees to be of full rank s, see details in [9, VI.7.3]). The
necessity of (2.4c) was first proved in [1] for separable autonomous Hamiltonians.

Remark 2.2 The main importance in preserving symplecticness resides in the back-
ward error analysis of symplectic PRK methods: for constant stepsizes h the
numerical solution of such methods is formally equal to the exact solution of a non-
autonomous Hamiltonian system with a global perturbed Hamiltonian H̃h(t, q, p)

depending on the stepsize h. Precise backward error analysis statements with explicit
error bounds are outside the scope of this paper. This type of results has been proved
for autonomous Hamiltonian systems [4, 9, 14].

In this paper we are particularly interested by the necessity of the conditions (2.4b)
for the partitioned Euler PRK method and the 2-stage Lobatto IIIA-B PRK method
for non-autonomous Hamiltonian systems. These two methods are important since
they can form the basis of higher order composition schemes. The combination of the
explicit Euler and of the implicit Euler method forms a PRK method with Butcher-
tableaux

0 0
1

1 1
1 (2.6)

and is known in the literature usually under the name of symplectic Euler method.
Clearly this irreducible PRK method does not satisfy c1 = ĉ1 and is thus not sym-
plectic for general non-autonomous Hamiltonian systems according to Theorem 2.2
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and Theorem 3.1 hereafter. The 2-stage Lobatto IIIA-IIIB method is sometimes pre-
sented in the literature, e.g., in [9, Table II.2.1, p. 39] and [4, p. 49], as a combination
of the trapezoidal rule with the midpoint rule, hence having Butcher-tableaux

(2.7)

Clearly this irreducible PRK method satisfies neither c1 = ĉ1, nor c2 = ĉ2 and
is thus not symplectic for general non-autonomous Hamiltonian systems according
to Theorem 2.2 and Theorem 4.1 hereafter. Using the matrix characterization of
symplecticness (2.5), we show that the conditions (2.4b) are necessary for the sym-
plecticness of the partitioned Euler method and the 2-stage Lobatto IIIA-B PRK
method. We also give the main lines of a proof of the necessity of (2.4b) for irre-
ducible PRK methods satisfying b̂j = bj �= 0 for j = 1, . . . , s. This proof is much
more technical and appeals to the results given in [9, VI.7] and [9, Theorem VI.7.10,
p. 222]. However, since very few PRK methods of interest may not satisfy the condi-
tions (2.4b), the proofs using the matrix characterization of symplecticness (2.5) for
the partitioned Euler methods and the 2-stage Lobatto IIIA-B PRK method are less
technical and easier to understand since they are only based on some matrix rela-
tions. Note that the 2-stage Lobatto IIIA-B PRK method can also be obtained as a
composition of the partitioned Euler methods, see Section 4.

One may argue that the only PRK methods of interest which may not sat-
isfy (2.4b) are the symplectic Euler method and possibly the 2-stage Lobatto
IIIA-B PRK method, and any composition scheme based on those low order meth-
ods. Nevertheless, for completeness we state a general result of the necessity of
conditions (2.4b):

Theorem 2.2 Consider the non-autonomous Hamiltonian system (1.1) and an irre-
ducible PRK method (2.3) with coefficients bj , b̂j for j = 1, . . . satisfying

bj �= 0, b̂j �= 0 for j = 1, . . . , s. (2.8)

Suppose that the map Φt0+h,t0(q0, p0) := (q1, p1) is a symplectic transformation
for the 2-form ω := ∑n

k=1 dqk ∧ dpk for any Hamiltonian H(t, q, p) ∈ C2(R ×
R

n×R
n,R) for |h| sufficiently small. Then the conditions (2.4b) are necessary. When

H(t, q, p) = H(q, p) or for separable Hamiltonians (2.2) there is no necessary
condition on cj , ĉj for j = 1, . . . , s.

The main lines of a proof are given in Appendix. This Theorem 2.2 which discusses
only the necessity of the conditions (2.4b) for irreducible PRK methods is an exten-
sion to non-autonomous Hamiltonian systems of [9, Theorem VI.7.10, p. 222] which
discusses the sufficiency and necessity of the conditions (2.4a) and (2.4c) of irre-
ducible PRK methods applied to autonomous Hamiltonian systems. As stated before
the main consequence of Theorem 2.2 is the non-symplecticness of the symplectic
Euler method and of the 2-stage Lobatto IIIA-IIIB method when the nodes are cho-
sen for example as in (2.6) and (2.7). However, simpler direct proofs of Theorem 2.2
are given for these two methods in Sections 3 and 4 respectively.
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3 The partitioned Euler methods I and II

The Butcher tableaux of the explicit Euler method and of the implicit Euler method
are given in (2.6). The two PRKmethods based directly on these twomethods will not
satisfy the relation (2.4b) since these methods have distinct node coefficients c1 = 0
for the explicit Euler method and ĉ1 = 1 for the implicit Euler method (or vice-versa
c1 = 1 and ĉ1 = 0). Nevertheless, we can consider more general PRKmethods by not
setting a priori the values of the nodes c1 and ĉ1. We consider 2 families of partitioned
Euler methods applied to (2.1) for various values of the parameters α, β ∈ R (though
it makes little sense to consider values α, β outside of the interval [0, 1]) as follows:
the partitioned Euler method I (PEI)

PEI : q1 = q0+hf (t0+αh, q0, p1), p1 = p0+hg(t0+βh, q0, p1) (3.1)

corresponding to the Butcher-tableaux

and the partitioned Euler method II (PEII)

PEII : q1 = q0+hf (t0+βh, q1, p0), p1 = p0+hg(t0+αh, q1, p0) (3.2)

corresponding to the Butcher-tableaux

Notice that PEII is simply PEI where the roles of q and p, respectively, f and g,
are exchanged. We observe that PEI can be interpreted as an approximate splitting
scheme of the type described in [2–5] where the time t is first ‘frozen’ in q̇ = f (t0 +
αh, q, p), ṗ = 0 before the explicit Euler method is applied and then frozen in q̇ = 0,
ṗ = g(t0 + βh, q, p) before the implicit Euler method is applied. An analogous
remark holds for PEII. The standard choice for the partitioned Euler methods I and II
is α = 0, β = 1, see (2.6). However, we will see in the context of non-autonomous
non-separable Hamiltonian systems that the condition α = β is essential to preserve
symplecticness. For separable ODEs q̇ = f (t, p), ṗ = g(t, q)we obtain two explicit
methodsS

PEI : p1 = p0 + hg(t0 + βh, q0), q1 = q0 + hf (t0 + αh, p1),

PEII : q1 = q0 + hf (t0 + βh, p0), p1 = p0 + hg(t0 + αh, q1).

Theorem 3.1 Consider the non-autonomous Hamiltonian system (1.1) and the
partitioned Euler methods I and II

PEI : q1=q0+h∇pH(t0+αh, q0, p1), p1=p0−h∇qH(t0+βh, q0, p1) (3.3)

PEII : q1=q0+h∇pH(t0+βh, q1, p0), p1=p0−h∇qH(t0+αh, q1, p0). (3.4)

Then the map Φt0+h,t0(q0, p0) := (q1, p1) of the partitioned Euler method I (or
II) is a symplectic transformation for the 2-form ω := ∑n

k=1 dqk ∧ dpk for any
Hamiltonian H(t, q, p) ∈ C2(R × R

n × R
n,R) for |h| sufficiently small if and only
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if α = β. When H(t, q, p) = H(q, p) or for separable Hamiltonians (2.2) both
methods are symplectic without any condition on α, β.

Proof We cannot apply Theorem 2.1 when α �= β since the partitioned Euler meth-
ods I and II do not satisfy (2.4b). Let us consider the partitioned Euler method I (3.3).
We have

[
∂q1
∂q0

∂q1
∂p0

∂p1
∂q0

∂p1
∂p0

]
=

[
In + h(∂q∇pH)(t0 + αh, q0, p1) O

−h(∂q∇qH)(t0 + βh, q0, p1) In

]

+
[

O h(∂p∇pH)(t0 + αh, q0, p1)

O −h(∂p∇qH)(t0 + βh, q0, p1)

] [
∂q1
∂q0

∂q1
∂p0

∂p1
∂q0

∂p1
∂p0

]

which can be reexpressed as

A

[
∂q1
∂q0

∂q1
∂p0

∂p1
∂q0

∂p1
∂p0

]
= B

where

A :=
[

In −h(∂p∇pH)(t0 + αh, q0, p1)

O In + h(∂p∇qH)(t0 + βh, q0, p1)

]
,

B :=
[

In + h(∂q∇pH)(t0 + αh, q0, p1) O

−h(∂q∇qH)(t0 + βh, q0, p1) In

]
.

For the symplecticness conditions we have
[

∂q1
∂q0

∂q1
∂p0

∂p1
∂q0

∂p1
∂p0

]T

Jn

[
∂q1
∂q0

∂q1
∂p0

∂p1
∂q0

∂p1
∂p0

]
= Jn ⇐⇒ (A−1B)T JnA

−1B = Jn

⇐⇒ A−T JnA
−1 = B−T JnB

−1.

By inverting the last relation and from J−1
n = −Jn we obtain AJnA

T = BJnB
T . We

easily get

AJnA
T =

[
O In + h(∂q∇pH)(t0+βh, q0, p1)

−In−h(∂p∇qH)(t0 + βh, q0, p1) O

]
,

BJnB
T =

[
O In + h(∂q∇pH)(t0+αh, q0, p1)

−In−h(∂p∇qH)(t0 + αh, q0, p1) O

]
.

Hence, the condition AJnA
T = BJnB

T is clearly satisfied for any Hamiltonian
H(t, q, p) if and only if α = β. When H(t, q, p) ≡ H(q, p) or (∂p∇qH)(t, q, p) ≡
0 we always have AJnA

T = BJnB
T without any condition on α, β. The proof for

the partitioned Euler method II (3.4) can be obtained in a similar fashion.

For a general non-autonomous Hamiltonian system we propose the choice c1 =
ĉ1 = 1/2 which together with b1 = b̂1 = 1 corresponds to the quadrature formula
given by the midpoint rule. Even for ODEs ẏ = f (t, y) the version of the explicit
Euler method with c1 = 1/2 has the advantage of integrating polynomials p(t) of
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degree at most one exactly whereas with c1 = 0 only constants are integrated exactly.
A similar remark holds for the implicit Euler method. The Butcher-tableaux of these
modified explicit and implicit Euler methods read as follows

We actually recommend using both the explicit Euler method and the implicit Euler
method with a node equal to 1/2 even for general non-autonomous systems of ODEs.
We are not aware of such a recommendation for these two methods elsewhere in the
literature. Our analysis has thus shed a new light on these two basic methods.

4 The 2-stage Lobatto IIIA-B PRKmethod

The Butcher-tableaux of coefficients of the s = 2-stage Lobatto IIIA-B PRK method
of order 2 are given by

(4.1)

The coefficients of the 2-stage Lobatto IIIA and IIIB methods are based on the
quadrature formula given by the trapezoidal rule and are defined through some
so-called simplifying assumptions, see [10, Chapter IV.5].

The coefficients of this method are easily shown to satisfy the sufficient condi-
tions (2.4) for symplecticness of Theorem 2.1. This method applied to (2.1) reads as
follows:

Q1 = q0,

Q2 = q0 + h

(
1

2
f (T1, Q1, P1) + 1

2
f (T2, Q2, P2)

)
,

P1 = p0 + h
1

2
g(T1, Q1, P1),

P2 = p0 + h
1

2
g(T1, Q1, P1),

q1 = q0 + h

(
1

2
f (T1, Q1, P1) + 1

2
f (T2, Q2, P2)

)
,

p1 = p0 + h

(
1

2
g(T1, Q1, P1) + 1

2
g(T2, Q2, P2)

)
,

where

T1 := t0, T2 := t0 + h, t1 := t0 + h.
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From T1 = t0, Q1 = q0, T2 = t1, Q2 = q1, P2 = P1, and denoting p1/2 := P1 = P2
this method can be simplified to

p1/2 = p0 + h
1

2
g(t0, q0, p1/2), (4.2a)

q1 = q0 + h

(
1

2
f (t0, q0, p1/2) + 1

2
f (t1, q1, p1/2)

)
, (4.2b)

p1 = p1/2 + h
1

2
g(t1, q1, p1/2). (4.2c)

The equations for p1/2 and q1 are implicit. This method is also known under
the names of Störmer/Verlet/leapfrog method depending on the context. Of course
one can exchange the roles of q and p, respectively f and g, to obtain another
nonequivalent version of the Störmer/Verlet/leapfrog method

q1/2 = q0 + h
1

2
f (t0, q1/2, p0), (4.3a)

p1 = p0 + h

(
1

2
g(t0, q1/2, p0) + 1

2
g(t1, q1/2, p1)

)
, (4.3b)

q1 = q1/2 + h
1

2
f (t1, q1/2, p1) (4.3c)

which could be named as the Störmer/Verlet/leapfrog method II and which formally
corresponds to a 2-stage Lobatto IIIA-B PRKmethod applied to (2.1) where the roles
of q and p, respectively, f and g, are exchanged. We will not explicitly consider this
method (4.3) hereafter, completely similar results to the ones presented below for
(4.2) hold for the method (4.3) as well.

The method (4.2) (denoted ρh) can also be interpreted as the composition of the
partitioned Euler method I (3.1) with stepsize h/2 and αI = βI = 0 (denoted Φh/2)
and of the partitioned Euler method II (3.2) with stepsize h/2 and βII = αII = 1
(denoted Φ̃h/2), i.e., ρh = Φ̃h/2 ◦ Φh/2 since we get for ρh

q1/2 = q0 + h

2
f (t0, q0, p1/2),

p1/2 = p0 + h

2
g(t0, q0, p1/2),

q1 = q1/2 + h

2
f (t1/2 + h/2, q1, p1/2) = q0+ h

2
f (t0, q0, p1/2) + h

2
f (t1, q1, p1/2),

p1 = p1/2 + h

2
g(t1/2 + h/2, q1, p1/2) = p1/2 + h

2
g(t1, q1, p1/2),
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leading to (4.2). This gives an alternative proof to its symplecticness for
non-autonomous Hamiltonian systems (1.1), see Theorem 3.1, since the par-
titioned Euler methods I and II have their node coefficients satisfy αI = βI

and βII = αII here. For separable Hamiltonians (2.2) we obtain an explicit
method

p1/2 = p0 − h
1

2
∇qU(t0, q0),

q1 = q0 + h

(
1

2
∇pT (t0, p1/2) + 1

2
∇pT (t1, p1/2)

)
,

p1 = p1/2 − h
1

2
∇qU(t1, q1).

It has the advantage to require one evaluation of the function∇qU(t, q) per step since
the value ∇qU(t1, q1) can be reused for the next step. For general nonautonomous
Hamiltonian systems we have the following result:

Theorem 4.1 Consider non-autonomous Hamiltonian systems (1.1) and the modi-
fied 2-stage Lobatto IIIA-B PRK method

p1/2 = p0 − h
1

2
∇qH(t0 + ĉ1h, q0, p1/2), (4.4a)

q1 = q0 + h

(
1

2
∇pH(t0 + c1h, q0, p1/2) + 1

2
∇pH(t0 + c2h, q1, p1/2)

)
,

(4.4b)

p1 = p1/2 − h
1

2
∇qH(t0 + ĉ2h, q1, p1/2), (4.4c)

corresponding to a modified 2-stage Lobatto IIIA-B PRK method with coefficients

(4.5)

where the nodes c1, c2, ĉ1, ĉ2 are free. Then the map Φt0+h,t0(q0, p0) := (q1, p1) is a
symplectic transformation for the 2-form ω := ∑n

k=1 dqk ∧dpk for any Hamiltonian
H(t, q, p) ∈ C2(R×R

n ×R
n,R) for |h| sufficiently small if and only if ĉ1 = c1 and

ĉ2 = c2. When H(t, q, p) = H(q, p) or for separable Hamiltonians (2.2) there is
no condition on c1, c2, ĉ1, ĉ2 for symplecticness.

Proof One can interpret the method (4.4) as the composition of the partitioned Euler
method I (3.3) with stepsize h/2 and αI = 2c1, βI = 2̂c1 and of the partitioned
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Euler method II (3.4) with stepsize h/2 and βII = 2c2 − 1, αII = 2̂c2 − 1. Denoting
t1/2 := t0 + h/2, we have

q1/2 = q0 + h

2
∇pH(t0 + αIh/2, q0, p1/2),

p1/2 = p0 − h

2
∇qH(t0 + βIh/2, q0, p1/2),

q1 = q1/2 + h

2
∇pH(t1/2 + βII h/2 q1, p1/2),

p1 = p1/2 − h

2
∇qH(t1/2 + αII h/2, q1, p1/2)

which corresponds to the PRK method with Butcher-tableaux (4.5) and nodes

c1 = αI

2
, c2 = 1 + βII

2
, ĉ1 = βI

2
, ĉ2 = 1 + αII

2
.

We have (
∂(q1, p1)

∂(q0, p0)

)
=

(
∂(q1, p1)

∂(q1/2, p1/2)

)(
∂(q1/2, p1/2)

∂(q0, p0)

)

and

A1

(
∂(q1/2, p1/2)

∂(q0, p0)

)
= B1, A2

(
∂(q1, p1)

∂(q1/2, p1/2)

)
= B2

where

A1 :=
[

In −h
2 (∂p∇pH)(t0 + αIh/2, q0, p1/2)

O In + h
2 (∂p∇qH)(t0 + βIh/2, q0, p1/2)

]
,

B1 :=
[

In + h
2 (∂q∇pH)(t0 + αIh/2, q0, p1/2) O

−h
2 (∂q∇qH)(t0 + βIh/2, q0, p1/2) In

]
,

A2 :=
[

In − h
2 (∂q∇pH)(t1/2 + βII h/2, q1, p1/2) O

h
2 (∂q∇qH)(t1/2 + αII h/2, q1, p1/2) In

]
,

B2 :=
[

In
h
2 (∂p∇pH)(t1/2 + βII h/2, q1, p1/2)

O In − h
2 (∂p∇qH)(t1/2 + αII h/2, q1, p1/2)

]
.

For symplecticness we have the equivalent conditions
(

∂(q1, p1)

∂(q0, p0)

)T

Jn

(
∂(q1, p1)

∂(q0, p0)

)
= Jn ⇐⇒

(A−1
1 B1)

T (A−1
2 B2)

T Jn(A
−1
2 B2)(A

−1
1 B1) = Jn ⇐⇒

A−1
1 B1JnB

T
1 A−T

1 = B−1
2 A2JnA

T
2 B−T

2 . (4.6)

When αI = βI and βII = αII we have

A−1
1 B1JnB

T
1 A−T

1 = Jn = B−1
2 A2JnA

T
2 B−T

2 ,

see the proof of Theorem 3.1. This also holds without any condition on αI , βI ,
βII , αII when H(t, q, p) = H(q, p) or for separable Hamiltonians (2.2). When
αI �= βI the value of

A−1
1 B1JnB

T
1 A−T

1
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generally depends in particular on the values of (∂q∇pH)(t0 + αIh/2, q0, p1/2) and
of (∂q∇pH)(t0 + βIh/2, q0, p1/2) whereas when βII �= αII the value of

B−1
2 A2JnA

T
2 B−T

2

generally depends in particular on the values of (∂q∇pH)(t1/2 + βII h/2, q1, p1/2)

and of (∂q∇pH)(t1/2+αII h/2, q1, p1/2). Hence, it is intuitively clear that we cannot
have the equality (4.6) in general for non-separable non-autonomous Hamiltonians
H(t, q, p). We can obtain a simple counterexample by considering the Hamiltonian
H(t, q, p) := 2tqp for (t, q, p) ∈ R × R × R and we get

A−1
1 B1JnB

T
1 A−T

1 =
[

0 1+h(t0+αI h/2)
1+h(t0+βI h/2)

− 1+h(t0+αI h/2)
1+h(t0+βI h/2)

]
,

B−1
2 A2JnA

T
2 B−T

2 =
[

0 1−h(t0+(1+βII )h/2)
1−h(t0+(1+αII )h/2)

− 1−h(t0+(1+βII )h/2)
1−h(t0+(1+αII )h/2) 0

]
.

The rational functions

1 + h (t0 + αIh/2)

1 + h (t0 + βIh/2)
,

1 − h (t0 + (1 + βII )h/2)

1 − h (t0 + (1 + αII )h/2)

are not equal for arbitrary values of t0 and h when αI �= βI or βII �= αII . Therefore
the conditions αI = βI and βII = αII are also necessary for symplecticness, leading
to the necessity of the relations ĉ1 = c1 and ĉ2 = c2.

Remark 4.1 An analogous theorem holds for a similar modification of the
Störmer/Verlet/leapfrog method II (4.3).

From Theorem 4.1 we see that there exists a symplectic extension of the 2-stage
Lobatto IIIA-B method for non-autonomous Hamiltonian systems satisfying ĉ1 =
1/2, ĉ2 = 1/2, it must satisfy c1 = ĉ1 = 1/2, c2 = ĉ2 = 1/2 and corresponds to the
following Butcher-tableaux of coefficients

(4.7)

the second method being equivalent to the midpoint rule. This method applied to
(2.1) reads

p1/2 = p0 + h
1

2
g(t1/2, q0, p1/2), (4.8a)

q1 = q0 + h

(
1

2
f (t1/2, q0, p1/2) + 1

2
f (t1/2, q1, p1/2)

)
, (4.8b)

p1 = p1/2 + h
1

2
g(t1/2, q1, p1/2), (4.8c)
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and for separable problems we obtain

p1/2 = p0 + h
1

2
g(t1/2, q0),

q1 = q0 + hf (t1/2, p1/2),

p1 = p1/2 + h
1

2
g(t1/2, q1).

It has the disadvantage that it requires two evaluations of the function g(t, q) per
step since the value g(t1/2, q1) cannot be reused for the next step. Notice that the
coefficients of the 2-stage Lobatto IIIA-B method given in [9, Table II.2.1, p. 39]
and [4, p. 49], see (2.7), satisfy c1 = 0, c2 = 1 and ĉ1 = 1/2, ĉ2 = 1/2, hence
according to Theorem 4.1 the corresponding method is not symplectic for general
non-autonomous Hamiltonian H(t, q, p). Notice that any choice of c1, c2, ĉ1, ĉ2 in
(4.5) satisfying c2 = 1 − c1, ĉ2 = 1 − ĉ1 gives a symmetric method of order 2. Any
other choice of those coefficients leads to a method of order 1.

5 Extended autonomous Hamiltonian systems

By introducing two additional variables u and s, the non-autonomous Hamiltonian
system (1.1) can be expressed as an extended autonomous Hamiltonian system for
the augmented variables (q, u), (p, s) with extended autonomous Hamiltonian

H(q, u, p, s) := H(s, q, p) − u, (5.1)

giving

q̇ = ∇pH(q, u, p, s) = ∇pH(s, q, p), (5.2a)

u̇ = Hs(q, u, p, s) = Ht(s, q, p), (5.2b)

ṗ = −∇qH(q, u, p, s) = −∇qH(s, q, p), (5.2c)

ṡ = −Hu(q, u, p, s) ≡ 1. (5.2d)

The extended Hamiltonian H(q, u, p, s) (5.1) is a first integral of the extended
autonomous Hamiltonian system (5.2) and thus remains constant along trajectories.
The flow of the extended Hamiltonian system (5.2) preserves the extended symplectic
two-form

η :=
n∑

k=1

dqk ∧ dpk + du ∧ ds. (5.3)

The variable u is independent from the rest of the equations and has thus no
influence on the other variables. We have u(t) = H(s(t), q(t), p(t)) + Const

along solutions of (5.2). Given initial conditions (q0, u0, p0, s0) at t0 we have
H(q(t), u(t), p(t), s(t)) ≡ H(q0, u0, p0, s0) along the corresponding solution.
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Moreover, for u0 := H(s0, q0, p0) we obtainH(q(t), u(t), p(t), s(t)) ≡ 0 along the
solution. To have s(t) ≡ t we must choose s0 := t0. The two-form

n∑

k=1

dqk ∧ dpk + dH(t, q, p) ∧ dt (5.4)

is thus preserved in R × R
n × R

n by the non-autonomous flow of (1.1). From
Stokes’ Theorem this corresponds to the preservation of the Poincaré-Cartan integral
invariant

∫

γ

n∑

k=1

pkdqk − H(t, q, p)dt

along closed curves γ ∈ R × R
n × R

n.
We consider the extended autonomous Hamiltonian (5.1) with initial conditions

(q0, u0, p0, s0) at t0. Applied to the corresponding extended autonomous Hamilto-
nian system (5.2) with these initial conditions, we consider PRK methods given by

Qi = q0 + h

s∑

j=1

aij∇pH(Tj , Qj , Pj ), Pi = p0 − h

s∑

j=1

âij∇qH(Sj , Qj , Pj ),

(5.5a)

Ti = s0 + cih, Si = s0 + ĉih for i = 1, . . . , s, (5.5b)

q1 = q0 + h

s∑

j=1

bj∇pH(Tj , Qj , Pj ), p1 = p0 − h

s∑

j=1

b̂j∇qH(Sj , Qj , Pj ),

(5.5c)

u1 = u0 +
s∑

j=1

bjHt (Tj , Qj , Pj ), s1 = s0 + h, (5.5d)

where the variable s is treated like the independent time variable t in (2.3). For s0 = t0
PRK methods (5.5) satisfying

s∑

j=1

âij = ĉi = ci for i = 1, . . . , s, (5.6)

are equivalent to PRK methods (2.3) applied to the non-autonomous Hamiltonian
system (1.1) with the additional equation for u1. By Theorem 2.1 PRK methods
(5.5) satisfying the conditions (2.4) and (5.6) are thus symplectic for the extended
Hamiltonian system (5.2), i.e., they preserve the extended two-form (5.3).

However, for PRK methods that do not satisfy (5.6) but (2.4b) such as the parti-
tioned Euler methods I (3.1) and II (3.2) with ĉ1 = c1 �= 1, and the modified 2-stage
Lobatto IIIA-B PRK method (4.4)–(4.5) with ĉ1 = c1 �= 1/2 and ĉ2 = c2 �= 1/2,
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we cannot conclude directly under the assumptions (2.4) that the extended two-form
(5.3) is preserved. This is the subject of the following theorem:

Theorem 5.1 Consider the extended autonomous Hamiltonian system (5.2) and PRK
methods (5.5a) satisfying the assumptions (2.4). Then the map 
h(q0, u0, p0, s0) :=
(q1, u1, p1, s1) is a symplectic transformation of (Rn+1 × R

n+1, η) into (Rn+1 ×
R

n+1, η) for the constant two-form η (5.3), i.e., η is preserved by the mapping 
h.

Proof The proof given here is analogous to the one given for Theorem 2.1. For |h|
sufficiently small the map (q0, u0, p0, s0) �→ (q1, u1, p1, s1) satisfies

p0 − ∇q0S
h
2 (q0, u0, p1, s1) = 0, s0 − ∂u0S

h
2 (q0, u0, p1, s1) = 0,

q1 − ∇p1S
h
2 (q0, u0, p1, s1) = 0, u1 − ∂s1S

h
2 (q0, u0, p1, s1) = 0

where Sh
2 (q0, u0, p1, s1) is a globally defined generating function of type II given by

Sh
2 (q0, u0, p1, s1) := qT

0 p1 + u0s1 + h

s∑

i=1

bi(H(Si, Qi, Pi) − Ui)

−h2
s∑

i=1

s∑

j=1

biaij (∇qH(Si, Qi, Pi)
T ∇pH(Sj , Qj , Pj )

−∂tH(Sj , Qj , Pj ))

and where to (5.5) we add

Ui = u0 +
s∑

j=1

aijHt (Tj , Qj , Pj ) for i = 1, . . . , s.

As another possibility, by introducing the additional variables r, w, the non-
autonomous Hamiltonian system (1.1) can be expressed equivalently as another
extended autonomous Hamiltonian system for the augmented variables (q, r), (p, w)

with extended autonomous Hamiltonian

H̃(q, r, p, w) := H(q, −w, p, r) = H(r, q, p) + w (5.7)

giving

q̇ = ∇pH̃(q, r, p, w) = ∇pH(r, q, p), (5.8a)

ṙ = H̃w(q, r, p, w) ≡ 1, (5.8b)

ṗ = −∇qH̃(q, r, p, w) = −∇qH(r, q, p), (5.8c)

ẇ = −H̃r (q, r, p, w) = Ht(r, q, p). (5.8d)

The extended Hamiltonian H̃(q, r, p, w) (5.7) is a first integral of the extended
Hamiltonian system (5.8) and thus remains constant along trajectories. The flow of
the extended Hamiltonian system (5.8) preserves the extended symplectic two-form

n∑

k=1

dqk ∧ dpk + dr ∧ dw.
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The variable w is independent from the rest of the equations and has thus
no influence on the other variables. We have w(t) = −H(r(t), q(t), p(t)) +
Const along solutions. Given initial conditions (q0, r0, p0, w0) at t0 we have
H̃(q(t), r(t), p(t), w(t)) ≡ H̃(q0, r0, p0, w0) along the corresponding solution.
Moreover, for w0 := −H(r0, q0, p0) we obtain H̃(q(t), r(t), p(t), w(t)) ≡ 0 along
the solution. To have r(t) ≡ t we must choose r0 := t0.

6 Numerical experiments

For PRK methods satisfying (2.4a) and (2.4c), the condition (2.4b) only matters for
non-autonomous non-separable Hamiltonians. Hence, to illustrate the relevance of
(2.4b) we will consider non-separable Hamiltonians. Starting from an autonomous
Hamiltonian system

q̇ = ∇pH(q, p), ṗ = −∇qH(q, p), (6.1)

we consider differential equations for the differences Q(t) := q(t) − b(t), P(t) :=
p(t) − a(t) for some functions (b(t), a(t)) ∈ R

n × R
n

Q̇ = ∇pH(Q+b(t), P+a(t))−ḃ(t), Ṗ = −∇qH(Q+b(t), P+a(t))−ȧ(t). (6.2)

This forms a non-autonomous Hamiltonian system for (Q, P ) with Hamiltonian

K(t, Q, P ) := H(Q + b(t), P + a(t)) + QT ȧ(t) − P T ḃ(t) (6.3)

as can be directly verified. The quantity

I (t, Q, P ) := H(Q + b(t), P + a(t)) = K(t, Q, P ) − QT ȧ(t) + P T ḃ(t) (6.4)

is a first integral of this non-autonomous Hamiltonian system since its Lie derivative
vanishes

∂t I (t, Q, P ) + ∂QI (t, Q, P )∇P K(t, Q, P ) + ∂P I (t, Q, P )(−∇QK(t, Q, P ))

= ∇qH(Q + b(t), P + a(t))T ḃ(t) + ∇pH(Q + b(t), P + a(t))T ȧ(t)

+∇qH(Q + b(t), P + a(t))T (∇pH(Q + b(t), P + a(t)) − ḃ(t))

+∇pH(Q + b(t), P + a(t))T (−∇qH(Q + b(t), P + a(t)) − ȧ(t))

≡ 0,

i.e., the quantity H(Q(t) + b(t), P (t) + a(t)) remains constant along any solution
(t, Q(t), P (t)). Applying various methods to non-autonomous Hamiltonian sys-
tems with Hamiltonian K(t, Q, P ) as in (6.3) constitutes a simple test to show the
relevance of the necessity of conditions (2.4b) when the Hamiltonian H(q, p) is non-
separable. We consider the non-autonomous Hamiltonian system (6.2) corresponding
to a non-autonomous Hamiltonian K(t, Q, P ) (6.3) based on the non-separable
Hamiltonian

H(q1, p1) = 1

2
p2
1 − cos(q1) + 1

5
sin(2q1)

(
1 + 1

4
p1

)
(6.5)
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and the functions (b1(t), a1(t)) := (cos(t), sin(t)). This Hamiltonian is a simple
non-separable perturbation sin(2q1)p1/20 of the separable Hamiltonian given in [9,
p. 379]. We consider the initial conditions (Q1(0), P1(0)) := (−1, 2.5).

Using a constant stepsize h = 0.005 on the interval [0, 500] we have applied
100000 steps of the partitioned Euler method PEI (3.3) for various choice of the
coefficients c1 = α and ĉ1 = β: α = β = 1/2, α = β = 1, α = β = 0.2,
and α = 0 �= β = 1 (the standard partitioned Euler method (2.6)). In Fig. 1 we
have plotted the errors in the invariant I (t) := H(Q(t) + b(t), P (t) + a(t)) for all
four methods. We observe that the error in this invariant oscillates around zero for
the first three symplectic methods satisfying ĉ1 = c1, but that there is a drift in the
error for the fourth non-symplectic one (the standard partitioned Euler method (2.6))
satisfying ĉ1 �= c1.

We now turn our interest to the modified 2-stage Lobatto IIIA-B method (4.4) for
a few choices of the coefficients c1, c2, ĉ1, ĉ2, all satisfying the symmetry conditions
c2 = 1 − c1, ĉ2 = 1 − ĉ1. When c1 = ĉ1 and c2 = ĉ2 the method is symplectic
for both the standard symplectic two-form ω (1.2) and the extended symplectic two-
form η (5.3). Otherwise the method is in general not symplectic for ω and certainly
also not for η. Using a constant stepsize h = 0.05 on the interval [0, 5000] we have
applied 100000 steps of the standard 2-stage Lobatto IIIA-B method (4.1), i.e., (4.4)
with c1 = ĉ1 = 0, c2 = ĉ2 = 1, the modified 2-stage Lobatto IIIA-B method (4.7)
i.e., (4.4) with c1 = ĉ1 = 1/2, c2 = ĉ2 = 1/2, the modified 2-stage Lobatto IIIA-B
method (4.4) with c1 = ĉ1 = 0.2, c2 = ĉ2 = 0.8, and the modified 2-stage Lobatto
IIIA-B method (4.4) with c1 = 0, c2 = 1 and ĉ1 = 1/2 �= c1, ĉ2 = 1/2 �= c2. In
Fig. 2 we have plotted the errors in the invariant I (t) := H(Q(t)+b(t), P (t)+a(t))

for all four methods. We observe that the error in this invariant oscillates around zero
for the first three symplectic methods satisfying ĉ1 = c1, ĉ2 = c2, but that there is a
drift in the error for the fourth non-symplectic method satisfying ĉ1 �= c1, ĉ2 �= c2.
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Fig. 1 Error in the invariant I (t) := H(Q(t) + b(t), P (t) + a(t)) for partitioned Euler methods PEI (3.3)
applied to (6.2) with H of (6.5)
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Fig. 2 Error in the invariant I (t) := H(Q(t) + b(t), P (t) + a(t)) for modified Lobatto IIIA-B methods
(4.4) applied to (6.2) with H of (6.5)

7 Conclusion

We have shown the necessity for the nodes ci, ĉi of symplectic irreducible PRK
methods to satisfy the conditions ĉi = ci for i = 1, . . . , s when applied to non-
autonomous non-separable Hamiltonian systems. These conditions are especially
relevant to the partitioned Euler method and the 2-stage Lobatto IIIA-B method.
We have illustrated numerically the relevance of these conditions on a simple
Hamiltonian system.

Acknowledgements The author would like to thank the anonymous referees for their constructive
criticisms which helped improve the clarity of the paper.

Appendix: Main lines of a proof of Theorem 2.2

To prove the necessity of conditions (2.4b) we have assumed that the PRK method
is irreducible in the sense given in [9, VI.7] and [9, Theorem VI.7.10, p. 222]. A
reducible PRK method is defined as a method having equivalent stages (Qi = Qj

and Pi = Pj for i �= j ). We have also added the condition (2.8), i.e., that no index
i exists where bi = 0 and b̂i = 0. This eliminates methods having stages that have
no influence on the numerical solution q1, p1 similar to the DJ-irreducibility of RK
methods [10, Definition 12.15]. This is justified as follows. We already know that
the conditions (2.4a), and (2.4c) are necessary for symplecticness. Assuming that
there is an index i such that bi = 0 or b̂i = 0, supposed to be unique for now,
from the necessary conditions (2.4a) and (2.4c) we then obtain b̂i = 0, bi = 0,
aji = 0, and âj i = 0 for j ∈ {1, . . . , s}\{i}. Hence, clearly in this situation the
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internal stages Qi, Pi will not influence the solution q1, p1 and the other internal
stages Qj, Pj for j �= i. If there is more than one index i with bi = 0 and b̂i = 0,
then one can easily show that all those internal stages can only influence each other,
but they can influence neither the solution q1, p1, nor the other internal stages Qj, Pj

with coefficients bj = b̂j �= 0. With that additional assumption (2.8) one is then in
position to prove the necessity of (2.4b).

Proof We can extend the sets of trees considered in [9, VI.7] and [9, Theorem
VI.7.10, p. 222] by having an extra type of nodes, say grey nodes, standing for the
value 1 of the scalar differential equation ṫ = 1. We use the notation and defini-
tions given in [9] though we exchange the role of q and p and f and g. No node is
attached on top of a grey node since the partial derivatives of a constant vanish. A
branch leading to a grey node stands for a partial differentiation with respect to t . For
the order conditions of partitioned methods, grey nodes need not be indexed. When
a grey node follows a black node with index j , then the sum in the order conditions
over the index j = 1, . . . , s must contain the coefficients cj . When a grey node fol-
lows a white node with index j , then the sum in the order conditions over the index
j = 1, . . . , s must contain the coefficients ĉj . Consider a P -series with coefficients
a(u) ( ∑

u∈T Pq

h|u|
σ(u)

a(u)F (u)(t0, q0, p0)
∑

u∈T Pp

h|u|
σ(u)

a(u)F (u)(t0, q0, p0)

)

For a P -series to be symplectic one of the necessary conditions for autonomous
Hamiltonian systems is to have

a(u) is independent of the color of the root of u.

The same necessary condition holds for non-autonomous Hamiltonian systems for
trees also containing grey nodes. This can be easily shown on a similar example given
in the proof of [9, Theorem VI.7.4, p. 217] where the top black node of the tree u is
replaced by a grey node. For that tree we take

H(t, q, p) = q1p2p3q4 + q3t + p4

and for that Hamiltonian we get

F 2(u)(t, q, p) = (−1)δ(u)σ (u)q1, F 1(ū)(t, q, p) = (−1)δ(u)σ (u)p2

where ū is the tree obtained from u by replacing its black root with a white root.
These elementary differentials are the only contribution to

(
∂(q1, p1)

∂q1
0

)T

Jn

(
∂(q1, p1)

∂p2
0

)

and we get

0 =
(

∂(q1, p1)

∂q1
0

)T

Jn

(
∂(q1, p1)

∂p2
0

)
= (−1)δ(u)h|u|(a(u) − a(ū)).

Now to prove our statement we can consider the same PRK matrix ΦPRK as given
in [9, VI.7] and [9, Theorem VI.7.10, p. 222], we do not even need to consider trees
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with grey nodes in that matrix. We define the vector d ∈ R
s with elements di :=

bici − b̂i ĉi for i = 1, . . . , s. For irreducible PRK methods we already know that the
condition b̂i = bi for i = 1, . . . , s is necessary for symplecticness, hence we obtain
di = bi(ci − ĉi ) for i = 1, . . . , s. The vector d satisfies

dT ΦPRK = 0

since dT φ(u) = a(v) − a(v̄) where v is obtained from u by appending a grey node
to its root and a(v) = a(v̄) for v ∈ T Pq as seen above. Since the matrix ΦPRK is of
maximal rank s we must have d = 0, hence its components satisfy di = bi(ci − ĉi ) =
0 for i = 1, . . . , s. Since bi �= 0 for i = 1, . . . , s we obtain (2.4b).
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