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Abstract.

We consider the numerical solution of systems of index 2 implicit differential-algebra-
ic equations (DAEs) by a class of super partitioned additive Runge–Kutta (SPARK)
methods. The families of Lobatto IIIA-B-C-C∗-D methods are included. We show
super-convergence of optimal order 2s−2 for the s-stage Lobatto families provided the
constraints are treated in a particular way which strongly relies on specific properties
of the SPARK coefficients. Moreover, reversibility properties of the flow can still be
preserved provided certain SPARK coefficients are symmetric.
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1 Introduction.

We consider the following class of systems of implicit differential-algebraic
equations (DAEs)

a′(t, y) = f(t, y, z),(1.1a)
0 = g(t, y),(1.1b)

where t ∈ R is the independent variable, y ∈ R
n is the differential variable,

z ∈ R
m is the algebraic variable, and the functions a : R × R

n −→ R
n, f :

R × R
n × R

m −→ R
n, and g : R × R

n −→ R
m are assumed to be sufficiently

differentiable. In a neighborhood of a solution we assume that ay(t, y) and
gy(t, y)a−1

y (t, y)fz(t, y, z) exist and are invertible. As shown in section 2, the
system of DAEs (1.1) is therefore of index 2 and when a(t, y) = y we obtain
Hessenberg DAEs of index 2 [2, 5, 7]. The DAEs (1.1) include the formulation
of mechanical systems with mixed holonomic, nonholonomic, scleronomic, and
rheonomic constraints provided holonomic constraints are differentiated once
explicitly with respect to t [8, 16, 17, 18]. The algebraic variable z corresponds to
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Lagrange multipliers when the DAEs can be derived from a variational principle
[8, 16].
Solutions to these DAEs (1.1) can be approximated numerically by applying

a class of super partitioned additive Runge–Kutta (SPARK) methods, such as
the combination of Lobatto IIIA-B-C-C∗-D methods [10]. SPARK methods can
take advantage of splitting the differential equations into different terms and of
partitioning the variables into different classes. Several properties of the SPARK
coefficients, satisfied by the Lobatto families, permit to treat the constraints and
the algebraic variables properly in order to retain super-convergence properties.
For Hessenberg DAEs of index 2 convergence results have been obtained for

some classes of implicit RKmethods [5, 7, 9, 15]. Methods preserving their super-
convergence order are either stiffly accurate or involve an extra projection step.
In this paper we show in particular that neither is necessary for Lobatto SPARK
methods. Super-convergence can be obtained even for non-stiffly accurate Lo-
batto RK methods such as the Lobatto IIIB, Lobatto IIIC∗, and Lobatto IIID
methods. This is possible provided the constraints are treated in a particular
way which only requires a simple linear combination of the constraints evaluated
at the internal stages and at the numerical solution as succinctly mentioned in
[12] for implementation purposes.
The paper is organized as follows. In section 2, the class of implicit DAEs

considered in this article is presented in more details. In section 3 the defin-
ition of SPARK methods applied to these DAEs is given. Some properties of
the SPARK coefficients are given which are crucial to treat the constraints ap-
propriately in order to obtain super-convergence results, and also in order to
preserve reversibility properties of the flow. In section 4 we analyze the exis-
tence, uniqueness, local error, and global convergence of the numerical solution
for the class of SPARK methods considered. Finally, a numerical experiment is
given in section 5 to illustrate the theoretical results.

2 The system of index 2 implicit DAEs.

We consider the system of implicit DAEs (1.1). Applying the chain rule to
a′(t, y) in (1.1) and then inverting ay(t, y), we can obtain an explicit expression
for y′

y′ = a−1
y (t, y) (f(t, y, z)− at(t, y, z)) .(2.1a)

Taking the total derivative of g(t, y) with respect to t in (1.1) we obtain the
additional underlying constraints

0 = gy(t, y)a−1
y (t, y)f(t, y, z)− gy(t, y)a−1

y (t, y)at(t, y, z) + gt(t, y).(2.1b)

The initial values y0, z0 at t0 are supposed to be given and to be consistent, i.e., to
satisfy (1.1b) and (2.1b). Recall that we have supposed gy(t, y)a−1

y (t, y)fz(t, y, z)
to be invertible. All these conditions ensure existence and uniqueness of a so-
lution passing through the initial values. By the implicit function theorem, the
algebraic variables can be expressed implicitly from (2.1b) as a function of t and
y. Differentiating the constraints (1.1b) a second time with respect to t, we can
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obtain an explicit expression for the derivative z′. The system of implicit DAEs
(1.1) is therefore of index 2. By defining

u := a(t, y), v := z,

F (t, u, v) := f(t, a−1(t, u), v), G(t, u) := g(t, a−1(t, u)),(2.2)

the system of DAEs (1.1) can be expressed equivalently as

u′ = F (t, u, v),(2.3a)
0 = G(t, u),(2.3b)

with the standard assumption for Hessenberg index 2 DAEs thatGu(t, u)Fv(t, u, v)
exists and is invertible.
With the equations of mechanical systems in mind where different types of

forces are present, see [8, 10, 17, 18], decompositions of the right-hand side
f(t, y, z) of (1.1a) can be considered

f(t, y, z) =
M∑

m=1

fm(t, y, z).(2.4a)

The functions fm are supposed to have distinct properties and can therefore be
numerically treated in a different way. The value of M corresponds to different
classes of right-hand side terms. This value must correspond to the number of
different methods to be used in conjunction in the SPARK scheme considered
and is reasonably small, e.g., M = 5. For the applications of the numerical
methods considered in this paper, the following additional assumption is made

f1(t, y, z) = f1(t, y).(2.4b)

This is not a restriction on the system (1.1), but rather a restriction on the
application of SPARK methods, see section 3.

3 SPARK methods.

In this paper we consider numerical methods applied directly to (1.1), not to
(2.1). This has the advantage of not requiring the computation of at(t, y) and
a−1

y (t, y).
Before giving a precise definition of SPARK methods applied to (1.1), we

first consider the application of a Runge–Kutta (RK) method with coefficients
(aij)i,j=1,...,s and (bj, cj)j=1,...,s to (1.1a). Following [11] it is natural to take

a(Ti, Yi) = a(t0, y0) + h

s∑
j=1

aijf(Tj, Yj , Zj) for i = 1, . . . , s,

a(t1, y1) = a(t0, y0) + h

s∑
j=1

bjf(Tj, Yj , Zj),
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where Ti := t0 + cih, t1 := t0 + h, and h is the step-size. This definition is
equivalent to the standard definition of a RK method applied to (2.3a), then
re-expressed in terms of the variables y, z satisfying the relations (2.2). A major
difficulty is to define the internal algebraic variables Zj by dealing properly
with the constraints (1.1b). A priori we would like not only 0 = g(Ti, Yi) to
be satisfied for i = 1, . . . , s, but also 0 = g(t1, y1). For stiffly accurate RK
methods, i.e., methods satisfying asj = bj for j = 1, . . . , s, this last equation
is automatically satisfied since y1 = Ys and t1 = Ts. However, for non-stiffly
accurate RK methods, such as Gauss and Radau IA methods, it is not possible
to satisfy all these equations at the same time since there are only sm internal
algebraic variables Zj for (s + 1)m constraints. For such methods one way to
circumvent this problem is to remove the equation 0 = g(t1, y1) and to project the
solution y1 obtained onto the constraint (1.1b) in an additional step [1, 3, 7, 14].
A similar approach preserving symmetry is given by the symmetric projection
method [4, 6]. In this paper we will show as a particular result that a projection
procedure is not necessary for RK methods such as Lobatto IIIB, Lobatto IIIC∗,
and Lobatto IIID. Another possibility is to replace the conditions 0 = g(Ti, Yi)
by 0 = g(Ti, Ŷi) where Ŷi satisfies

a(Ti, Ŷi) = a(t0, y0) + h

s∑
j=1

âijf(Tj, Yj , Zj)

for other RK coefficients (âij)i,j=1,...,s satisfying the stiff accuracy condition
âsj = bj for j = 1, . . . , s. In the case of Lobatto methods we can consider
taking the coefficients âij of Lobatto IIIA or of Lobatto IIIC methods which are
both stiffly accurate. Order conditions for such partitioned Runge–Kutta (PRK)
methods can be found in [15]. We will see however in what follows that for certain
classes of RK methods such as Lobatto IIIB, Lobatto IIIC∗, and Lobatto IIID
methods, there is an alternative way of dealing with constraints which does not
require any projection or the introduction of additional internal stages. The
main idea is to add the equation 0 = g(t1, y1) and to replace the constraints
equations 0 = g(Ti, Yi) for i = 1, . . . , s by a well-chosen linear combination of
lower dimension. We obtain the system of sm equations

0 =
s∑

j=1

rijg(Tj, Yj) for i = 1, . . . , s− 1, 0 = g(t1, y1).

The main difficulty is to define these linear combinations of constraints in such
a way that the method has highest possible order. For the methods under
consideration in this paper the coefficients (rij)i=1,...,s−1,j=1,...,s will be chosen
as those of Ã1 in (3.2).
We state hereafter some assumptions and properties of the coefficients of the

SPARK methods that we will consider, according to [12]. In this paper we denote
the m × m identity matrix by Im, the ith s-dimensional unit basis vector by
ei := (0, . . . , 0, 1, 0, . . . , 0)T , the s-dimensional zero vector by 0s := (0, . . . , 0)T ,
the weight vector by b := (b1, . . . , bs)T , the node vector by c := (c1, . . . , cs)T , and
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the RK coefficients matrices ofM distinct RK methods by Am := (aij,m)i,j=1,...,s

for m = 1, . . . ,M . It is assumed that the number s of internal stages satisfies
s ≥ 2. SPARK methods satisfying the following assumptions are considered

eT
1 A1 = 0T

s ,(3.1a)
eT

s A1 = bT ,(3.1b)

A1Am =
(
0T

s

N

)
for m = 2, . . . ,M,(3.1c) (

N
bT

)
is invertible,(3.1d)

eT
s A3 = bT .(3.1e)

These assumptions are satisfied for example by the s-stage Lobatto SPARK
families with M = 5 and A1, A2, A3, A4, A5 being the RK matrices of Lobatto
IIIA-B-C-C∗-D coefficients respectively [10, 12]. The assumptions (3.1be) are
stiff accuracy conditions. Let Ã1 be the (s − 1) × s sub-matrix of A1 given by
the relation

A1 =
(
0T

s

Ã1

)
.(3.2)

We define the s× (s+ 1) matrix Q by

Q := L

(
Ã1 0s−1

0T
s 1

)
(3.3)

where the s × s matrix L is any invertible matrix. To simplify the analysis
hereafter we take

L :=
(

Ã1

eT
s

)−1

.

The invertibility of the matrix on the right-hand side and of A3 follows from the
assumption (3.1d) and the relation(

N
bT

)
=
(

Ã1

eT
s

)
A3

which is a simple consequence of the assumptions (3.1ce) for m = 3. Thus, we
take

Q :=
(

Ã1

eT
s

)−1(
Ã1 0s−1

0T
s 1

)
(3.4)

This matrix Q satisfies

Q =
(
Is 0s

)
+
(
Os,s−1 −p p

)
, p :=

(
Ã1

eT
s

)−1

es.
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Hence, we have ps = 1, qsj = 0 for j = 1, . . . , s and qs,s+1 = 1. From this result
we obtain easily the fact that

Q

 v
d
d

 = ( v
d

)
(3.5)

where v is an arbitrary vector in R
s−1 and d an arbitrary constant. To simplify

the expression of our results and their proof, we introduce the (s+1)×s matrices

αm :=
(

Am

bT

)
for m = 1, . . . ,M.

From the assumptions (3.1) it follows that

Qα1 = A1, Qαm = A3 for m = 2, . . . ,M.(3.6)

Using the above notations and assumptions, we are now in position to give a
precise definition of the application of SPARK methods to (1.1):

Definition 3.1. One step of an s-stage super partitioned additive Runge–
Kutta (SPARK) method applied with step-size h to the system of index 2 implicit
DAEs (1.1) with decomposition (2.4), initial values y0, z0 at t0, and step-size h
reads

0 = a(Ti, Yi)− a(t0, y0)− h

s∑
j=1

M∑
m=1

aij,mfm(Tj , Yj , Zj)(3.7a)

for i = 1, . . . , s,

0 = a(t1, y1)− a(t0, y0)− h

s∑
j=1

bjf(Tj, Yj , Zj),(3.7b)

0 =
s∑

j=1

qijg(Tj, Yj) + qi,s+1g(t1, y1) for i = 1, . . . , s,(3.7c)

where the coefficients qij are those of a matrix Q satisfying (3.3) (the equation
0 = g(t1, y1) is thus satisfied).

Remark 3.1. In a o(1)-neighborhood of y0 and z0 the solution of (3.7) does
not depend on z0 (see Theorem 4.1 below). The value z0 only determines to
which branch z = z(t, y) of (2.1b) the solution is close. An accurate value
z1 is not required since the values zn do not influence the global convergence
properties of the differential variable y. For SPARK methods satisfying cs = 1
the approximation given by z1 := Zs is generally adequate.
An extension of the above definition including also index 3 constraints is given

in [12]. A major difficulty of SPARK methods lies in the numerical solution
of the resulting systems of nonlinear equations. Not only the use of matrix Q
reestablishes super-convergence properties of non-stiffly accurate Lobatto meth-
ods, but it also allows for an efficient implementation of SPARK methods by
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application of modified Newton iterations [11, 12, 13]. The structure of the ap-
proximate Jacobian becomes greatly simplified and facilitates the construction
of efficient preconditioners for stiff problems [12, 13].
In order to preserve reversibility properties of the flow, a question of interest

is if a SPARK method based on symmetric RK coefficients still preserves its
symmetry. The answer is affirmative:

Theorem 3.1. Consider the system of index 2 implicit DAEs (1.1) with
consistent initial values (y0, z0) at t0. Consider a SPARK method (3.1) with co-
efficients satisfying the assumptions (3.1), such that its coefficients (bi, ci, aij,m)
for m = 1, . . . ,M are symmetric for m = 1 and when fm �≡ 0 for m ≥ 2, i.e.,

bi = bs+1−i, for i = 1, . . . , s,
ci = 1− cs+1−i, for i = 1, . . . , s,
as+1−i,s+1−j,m + aij,m = bj for i = 1, . . . , s, and j = 1, . . . , s.

Then the SPARK method is symmetric.
Proof. Exchanging y0 and y1 and h with −h in (3.7), we obtain a method

with internal stages T̃i, Ỹi, Z̃i for i = 1, . . . , s and numerical solution y1. By
defining T i := T̃s+1−i, Y i := Ỹs+1−i, Zi := Z̃s+1−i we obtain the same equations
(3.7a) with Ti, Yi, Zi, y1 replaced respectively by T i, Y i, Zi, y1. We have assumed
Q of the form (3.3) and we can choose M = Is. For the constraints equations
(3.7c) we obtain g(t1, y1) = 0 and

0 =
s∑

j=1

aij,1g(T s+1−j , Y s+1−j) for i = 2, . . . , s.(3.8)

Since A1 is supposed to satisfy (3.1b) we can subtract to the equations (3.8) for
i = 2, . . . , s− 1 the equation (3.8) for i = s. We obtain

0 =
s∑

j=1

(bj − aij,1)g(T s+1−j , Y s+1−j) for i = 2, . . . , s− 1.

By using the symmetry of coefficients aij,1 this leads to

0 =
s∑

j=1

as+1−i,j,1g(T j , Y j) for i = 2, . . . , s− 1.

Together with 0 =
∑s

j=1 bjg(T j , Y j) we obtain again the equations (3.7c) with
Tj , Yj replaced respectively by T j , Y j .

4 Analysis of SPARK methods.

We consider the following simplifying assumptions

B(p) :
s∑

i=1

bic
k−1
i =

1
k
, for k = 1, . . . , p,
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Cm(qm) :
s∑

j=1

aij,mck−1
j =

ck
i

k
for i = 1, . . . , s, and k = 1, . . . , qm,

Dm(rm) :
s∑

i=1

bic
k−1
i aij,m =

bj

k

(
1− ck

j

)
for j = 1, . . . , s, and k = 1, . . . , rm,

where m ∈ {1, . . . ,M}. If one of the assumptions Cm(1) is satisfied for an
index m we can assume the system (1.1) to be autonomous. Notice that the
only method of real interest which does not satisfy this condition is the 2-stage
Lobatto IIIB method. In this paper we will assume that C1(1) and C3(1) hold in
any case. To analyze SPARK methods we can also assume that a(t, y) ≡ y since
by definition SPARK methods applied to (1.1) are equivalent to their application
to (2.3). Therefore, we can assume the system (1.1) to be autonomous and that
a(t, y) ≡ y, i.e., we can simply consider Hessenberg index 2 DAEs in any part of
our analysis

y′ = f(y, z) = f1(y) +
M∑

m=2

fm(y, z),(4.1a)

0 = g(y),(4.1b)

with the standard assumption that gy(y)fz(y, z) exists and is invertible in a
neighborhood of a solution. This greatly simplifies the proofs. All results can
then be directly reformulated for SPARK methods (3.7) applied to (1.1).
Definition 3.1 of SPARK methods applied to (4.1) can be expressed as follows

0 = Yi − y0 − h
s∑

j=1

M∑
m=1

αij,mfm(Yj , Zj) for i = 1, . . . , s+ 1,(4.2a)

0 =
s+1∑
j=1

qijg(Yj) for i = 1, . . . , s(4.2b)

where we have formally introduced the notation Ts+1 := t1 and Ys+1 := y1. In
general existence and uniqueness to these nonlinear equations cannot be shown
unless some assumptions on the SPARK coefficients are made.

Theorem 4.1. Suppose that y0 = y0(h), z0 = z0(h) satisfy

g(y0) = O(h2), gy(y0)f(y0, z0) = O(h),

gy(y)fz(y, z) exists and is invertible in a neighborhood of (y0, z0). Assume that
the SPARK method (4.2) has coefficients satisfying the assumptions (3.1) and
that the simplifying assumptions C1(1) and C3(1) hold. Then for h ≤ h0 there
exists a locally unique SPARK solution which satisfies

Yi − y0 = O(h) for i = 1, . . . , s+ 1, Zi − z0 = O(h) for i = 1, . . . , s.
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Proof. The proof of this theorem can be done by application of the im-
plicit function theorem, as in the proof of [7, Theorem VII.4.1]. We rewrite the
equations (4.2b) for i = 1, . . . , s as

0 =
1
h

s+1∑
j=1

qijg(Yj) =
1
h
g(y0)+

1
h

s+1∑
j=1

qij

∫ 1

0

gy(y0+τ(Yj −y0))dτ · (Yj − y0) .

(4.3)
By inserting the relation

1
h
(Yj − y0) =

s∑
k=1

αjk,1f1(Yk) +
M∑

m=2

s∑
k=1

αjk,mfm(Yk, Zk),

in the right-hand side of (4.3) and by using (3.6), for h = 0 and Yi(0) =
y0, Zi(0) = z0 we obtain

s∑
k=1

aik,1gy(y0)f1(y0) +
s∑

k=1

aik,3gy(y0)

(
M∑

m=2

fm(y0, z0)

)
.

By using C1(1) and C3(1) this reduces to

cigy(y0)

(
f1(y0) +

M∑
m=2

fm(y0, z0)

)
= cigy(y0)f(y0, z0)

which therefore vanishes. Using the tensor matrix product notation ⊗, the
Jacobian of (4.2a) and (4.3) with respect to Y1, . . . , Ys, Ys+1, Z1, . . . , Zs is equal
at h = 0 to (

Is+1 ⊗ In O
* A3 ⊗ gy(y0)fz(y0, z0)

)
by (3.6) and is therefore invertible.
The goal now is to obtain a local error estimate for the differential variable y1

compared to the exact solution y(t) at t0 + h passing through consistent initial
values y0, z0 at t0. In this paper we will not define once again the whole tree
theory for Hessenberg index 2 DAEs which can be found for example in [5, 7].
Definitions of trees t and related quantities ρ(t), γ(t), etc., can be given as in
[5, Section 5] and [7, Section VII.5]. We only present the main differences. To
each meager node we associate in addition a number m with m ∈ {1, . . . ,M},
this corresponds to fm. To a tree with a meager root we associate the quan-
tity m(t) which is the number m associated to its root. Notice that because
our assumption f1(y, z) = f1(y), each meager node with associated number 1
cannot be directly connected upward by a branch to a fat node. We denote
the corresponding sets of trees by LADAT 2y,m if the root is meager with as-
sociated number m, and by LADAT 2z if the root is fat. We use the notation
LADAT 2 to emphasize that these sets are an extension of LDAT 2 of [5, 7] with
the additional letter A standing for the word additive.
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Defining ki,m(h) := hfm(Yi, Zi) for i = 1, . . . , s we can rewrite (4.2a) as

Yi = y0 +
s∑

j=1

M∑
m=1

αij,mkj,m for i = 1, . . . , s+ 1.

First we give some expressions for the derivatives of ki,m and Zi which are similar
to those given in [5, Theorem 5.7] and [7, Theorem VII.5.6].

Theorem 4.2. For i = 1, . . . , s and m = 1, . . . ,M we have

k
(q)
i,m(0) =

∑
t∈LADAT2y,m

ρ(t)=q

γ(t)Φi(t)F (t)(y0, z0),

Z
(q)
i (0) =

∑
u∈LADAT2z

ρ(t)=q

γ(u)Φi(u)F (u)(y0, z0),

where the coefficients Φi(t) and Φi(u) are given recursively by Φi(τm) = 1 and

Φi(t) =
s∑

µ1=1

· · ·
s∑

µm=1

αiµ1,m(t1) · · ·αiµm,m(tn)Φµ1(t1) · · ·Φµm(tm)Φi(u1) · · ·Φi(un)

if t = [t1, . . . , tm, u1, . . . , un]y,

Φi(u) =
s∑

j=1

s+1∑
k=1

s∑
µ1=1

· · ·
s∑

µm=1

ωijqjkαkµ1,m(t1) · · ·αkµm,m(tn)Φµ1(t1) · · ·Φµm(tm)

if u = [t1, . . . , tm]z.(4.4)

The coefficients qjk are those of matrix Q in (3.4) and the coefficients ωij are
those of ω := A−1

3 .
A proof of this theorem can be obtained completely similarly to the ones of

[5, Theorem 5.7] and [7, Theorem VII.5.6], it is therefore omitted. A direct
consequence is:

Theorem 4.3. The numerical solution y1(h) of (4.2) satisfies

y
(q)
1 (0) =

M∑
m=1

∑
t∈LADAT2y,m

ρ(t)=q

γ(t)
s∑

i=1

biΦi(t)F (t)(y0, z0).

For the local error we obtain:
Theorem 4.4. Consider the Hessenberg index 2 DAEs (4.1) with consistent

initial values (y0, z0) at t0 and such that gy(y)fz(y, z) exists and is invertible in a
neighborhood of the exact solution. Consider a SPARK method with coefficients
satisfying the assumptions of Theorem 4.1 and the simplifying assumptions B(p),
Cm(qm) and Dm(rm) for m = 1, . . . ,M . Then we have

y1 − y(t0 + h) = O(hµ+1)

where µ := min(p, 2q + 2, q + r + 2, 2q3, q3 + r3 + 1), with q := min(q1, . . . , qM )
and r := min(r1, . . . , rM ). If the function f(y, z) of (4.1a) is linear in z then
the value 2q3 in µ can be changed to 2q3 + 1.
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Remark 4.1. The same local error estimate also holds for SPARK methods
(3.1) applied to the system of index 2 implicit DAEs (1.1).
A proof of this theorem can be obtained completely similarly to the ones

of [5, Theorem 5.9] and [7, Theorem VII.5.10], it is therefore omitted. After
application of the simplifying assumptions Cm(qm) in (4.4) we simply use the
fact that

Q


ck
1
...
ck
s

1

 =
 ck

1
...
ck
s


when cs = 1 which directly follows from (3.5).
Following for example [7, Theorem VII.4.5], global convergence of SPARK

methods is easily obtained:
Theorem 4.5. Consider the system of index 2 implicit DAEs (1.1) with

consistent initial values (y0, z0) at t0 and such that

ay(t, y) and gy(t, y)a−1
y (t, y)fz(t, y, z)

exist and are invertible in a neighborhood of the exact solution. Consider a
SPARK method (3.1) with coefficients satisfying the assumptions of Theorem 4.1
with local error order µ, i.e., y1−y(t0+h) = O(hµ+1). Then the SPARK method
is convergent of order µ, i.e., the global error satisfies

yn − y(tn) = O(hµ)

for tn − t0 ≤ Const and h := max(|h1|, . . . , |hn|).
A direct consequence of Theorem 4.5 is the super-convergence of Lobatto IIIA-

B-C-C∗-D SPARK methods:
Corollary 4.6. Consider the system of index 2 implicit DAEs (1.1) with

consistent initial values (y0, z0) at t0 and such that

ay(t, y) and gy(t, y)a−1
y (t, y)fz(t, y, z)

exist and are invertible in a neighborhood of the exact solution. Then the global
error of the s-stage Lobatto IIIA-B-C-C∗-D SPARK method (3.1) satisfies

yn − y(tn) = O(h2s−2)

for tn − t0 ≤ Const and h := max(|h1|, . . . , |hn|). Moreover, reversibility prop-
erties of the flow are still preserved provided f3 ≡ 0 and f4 ≡ 0.

Proof. The s-stage Lobatto IIIA-B-C-C∗-D coefficients satisfy the simpli-
fying assumptions B(p), Cm(qm), and Dm(rm) for m = 1, . . . , 5 with p =
2s − 2, q1 = s, r1 = s − 2, q2 = s − 2, r2 = s, q3 = s − 1, r3 = s − 1, q4 =
s − 1, r4 = s − 1, q5 = s − 1, r5 = s − 1. The Lobatto IIIA-B-D coefficients
are known to be symmetric [7, 10], hence reversibility preservation is a simple
consequence of Theorem 3.1.
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Remark 4.2. Notice that the above result is not a generalization of [9, Corol-
lary 5.3] for Lobatto IIIA methods since here we have assumed f1(y, z) = f1(y).
However, it can be seen as a generalization of the super-convergence result of
Lobatto IIIC methods for Hessenberg index 2 DAEs which was obtained in [5].

5 A numerical experiment.

To show the relevance of the theoretical results, we have applied the 2-stage
and 3-stage Lobatto IIIA-B-C-C∗-D SPARK methods with constant stepsize h
to the following Hessenberg index 2 DAEs(

y′1
y′2

)
= f1(y1, y2) +

5∑
m=2

fm(y1, y2, z1), 0 = g(y1, y2),(5.1a)

where

f1(y1, y2) =
(

y2 − 2y2
1y2

−y2
1

)
, f2(y1, y2, z1) =

(
y1y

2
2z

2
1

e−tz1 − y1

)
,

f3(y1, y2, z1) =
(

−y2
2z1

−3y2
2z1

)
, f4(y1, y2, z1) =

(
2y1y2

2 − 2e−2ty1y2
z1

)
,

f5(y1, y2, z1) =
(
2y2

2z
2
1

y2
1y

2
2

)
, g(y1, y2) = y2

1y2 − 1.

For the initial conditions y10 = 1, y20 = 1 at t0 = 0 the exact solution to this
test problem is given by

y1(t) = et, y2(t) = e−2t, z1(t) = e2t.

In Fig. 5.1 we have plotted the global errors at tn = 1 with respect to different
stepsizes h. Logarithmic scales have been used so that a curve appears as a
straight line of slope k whenever the leading term of the global error is of order
k, i.e., when ‖yn−y(tn)‖ = O(hk). For the 2-stage method of order 2 we observe
a straight line of slope 2 and for the 3-stage method of order 4 we observe a
straight line of slope 4, thus confirming the orders of convergence predicted by
Corollary 4.6.

6 Conclusion.

The numerical approximation of the solution of a class of index 2 implicit
DAEs by SPARK methods has been considered. We have shown that for certain
classes of SPARKmethods super-convergence can be achieved even if the SPARK
coefficients are not all stiffly accurate. This is possible by taking a specific
linear combination of the constraints evaluated at the internal stages and at the
numerical solution. Certain properties of SPARK coefficients are essential with
that respect. We have proved in particular that the s-stage Lobatto IIIA-B-C-
C∗-D SPARK methods retain their classical order of super-convergence equal
to 2s − 2. Moreover, reversibility properties of the flow can still be preserved
provided certain SPARK coefficients are symmetric.
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Figure 5.1: Global errors of the s-stage Lobatto IIIA-B-C-C∗-D SPARK methods
(s = 2, 3) with constant stepsizes applied to the test problem (5.1).
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