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438 L. R. PETZOLD, L. O. JAY, AND J. YEN

1. Introduction

One of the most difficult problems in the numerical solution of ordinary dif-
ferential equations (ODEs) and in differential-algebraic equations (DAEs)
is the development of methods for dealing with highly oscillatory systems.
These types of systems arise, for example, in vehicle simulation when mod-
elling the suspension system or tyres, in models for contact and impact,
in flexible body simulation from vibrations in the structural model, in mo-
lecular dynamics, in orbital mechanics, and in circuit simulation. Standard
numerical methods can require a huge number of time-steps to track the os-
cillations, and even with small stepsizes they can alter the dynamics, unless
the method is chosen very carefully.

What is a highly oscillatory system, and what constitutes a solution of
such a system? As we will see, this question is somewhat application-
dependent, to the extent that it does not seem possible to give a precise
mathematical definition which would include most of the problems that
scientists, engineers and numerical analysts have described as highly os-
cillatory. Webster's Ninth New Collegiate Dictionary (1985) includes the
following definitions for oscillate: 'to swing backward and forward like a
pendulum; to move or travel back and forth between two points; to vary
above and below a mean value.' Here we are mainly interested in systems
whose solutions may be oscillatory in the sense that there is a fast solution
which varies regularly about a slow solution. The problem will be referred
to as highly oscillatory if the timescale of the fast solution is much shorter
than the interval of integration.

We will begin with a simple example of an oscillating problem from
multibody dynamics. In Cartesian coordinates, a simple stiff spring pen-
dulum model with unit mass, length, and gravity, can be expressed as

(1.1a)
(Lib)
(1.1c)
(l.ld)

where 1/e2 S> 1 is the spring constant. Preloading the spring by using
e = VlO~3, the initial position (xo>2/o) = (0.9,0.1), and the zero initial
velocity (UQ, VQ) = (0,0), the results of the states (x, y, u, v) in the 0 to 10[s]
simulation are shown in Fig. 1.

The solution to this problem consists of a low-amplitude, high-frequency
oscillation superimposed on a slow solution. It is not immediately clear that
a slow solution appears in the above problem. In fact, we can only identify
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Fig. 1. Stiff spring pendulum in Cartesian coordinates

the slow solution of (1.1) using a proper nonlinear coordinate transforma-
tion (x,y) = (r cos(0), r sin(0)). In polar coordinates (r,6), we obtain the
equations of motion of (1.1):
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where (z,u) is the velocity. In the 0 to 10[s] second simulation, using the
same initial conditions, we obtain the solution in Fig. 2. It is clear that the
length r represents the fast motion and the angle 6 the slow motion.

One of the questions one must answer in selecting an appropriate math-
ematical or numerical method is: 'What do we mean by a solution?' For
example, one might be interested only in finding the slow solution. On the
other hand, in some situations it may be important to recover more inform-
ation about the high-frequency oscillation, such as its amplitude, its energy
or its envelope. The most detailed information about the high-frequency
oscillation also includes its phase; this information is usually very difficult
to recover, particularly over intervals which are long in comparison to the
period of the oscillation. Efficiency is often an important consideration; one
might be willing to give up on tracking some of the detailed information of
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Fig. 2. Stiff spring pendulum in polar coordinates

the high-frequency oscillation in order to take much larger stepsizes. This is
the case in real-time simulation of mechanical systems. For other problems,
maintaining physical and mathematical properties in the numerical solution
can be critical, particularly over long-time intervals. For example, in mo-
lecular dynamics it may be important to maintain invariants like the energy
or the symplectic structure of the problem (Arnold 1989). What is meant
by a solution is determined not only by the physical properties of the system
and its mathematical structure, but also by how the information from the
simulation is to be used.

The form and structure of the oscillating problem is highly application-
dependent. Some problems are posed as a first-order ODE system, others as
a second-order ODE system. Other problems include constraints, and hence
are formulated as a DAE system. Often these ODE and DAE systems have
a special mathematical structure. Some applications yield problems which
are linear or nearly linear, while other applications require the solution of
highly nonlinear oscillating systems. Some problems may have a single high
frequency and be nearly periodic, whereas other problems may have mul-
tiple high-frequency components. Some oscillating problems, for example
in ocean dynamics (Garrett and Munk 1979, Gjaja and Holm 1996), cor-
rosion modelling (Tidblad and Graedel 1996), atmospheric modelling (Ko-
pell 1985), nonlinear optics (Agrawal 1989), ab initio molecular dynamics
(Tuckerman and Parrinello 1994) yield partial differential equation (PDE)
systems; these problems are beyond the scope of the present paper although

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002750
Downloaded from https://www.cambridge.org/core. The University of Iowa, on 24 Oct 2019 at 22:21:00, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002750
https://www.cambridge.org/core


OSCILLATORY SYSTEMS 441

many of the same considerations and types of methods apply for the time
integration.

This paper will deal mainly with numerical methods for oscillating sys-
tems. There is an extensive literature in applied mathematics (Bogoliubov
and Mitropolski 1961, Minorsky 1974, Fenichel 1979, Kevorkian and Cole
1981) including the method of averaging, the method of multiple scales,
and the stroboscopic method, on approximating the solution to oscillating
problems. Some of these techniques are related to the numerical methods
described here. Methods from applied mathematics can sometimes be com-
bined advantageously with numerical methods (Kirchgraber 1982) for the
solution of oscillating problems. Most of the mathematical techniques re-
quire a nearly linear structure of the problem. For some applications, the
equations naturally occur in this structure or can be easily reformulated; for
others, casting the problem in this form is difficult or impossible. There is
also a tradition of physically motivated mathematical or numerical methods
that reformulate the system prior to numerical solution, using approxima-
tions that the scientist or engineer deems to be valid. These methods can be
quite powerful when used carefully. The LIN method (see Subsection 4.4)
for molecular dynamics, and modal analysis methods (see Subsection 3.4)
for structural analysis are examples of these kinds of methods.

A wide variety of numerical methods has been developed for highly os-
cillatory problems. The best method to use is strongly dependent on the
application. Small-amplitude oscillations in linear or nearly linear systems
can often be damped via highly stable implicit numerical methods. We
will see that it is also feasible to damp the oscillation in certain structured,
highly nonlinear oscillating problems from mechanical systems. Even with
numerical methods based simply on damping the oscillation, there can be
unforeseen difficulties due to the nonlinear oscillation, for example in auto-
matic stepsize control and in obtaining convergence of the Newton iteration
of implicit numerical methods. In other applications, damping the oscillation
can destroy important properties of the solution. For these problems, much
attention has been focused on preserving important physical and mathem-
atical properties like the energy or the symplectic structure of the system.
Many of the numerical methods that can do this require relatively small
stepsizes. Efficiency is also an important consideration, making these prob-
lems quite challenging. Still other problems yield systems with a single
high-frequency oscillation. Methods based on envelope following can yield
the smooth solution in this case.

It is important to recognize that, in general, one should not expect to be
able to numerically solve nonlinear highly oscillatory problems using step-
sizes which are large relative to the timescale of the fast solution. Stand-
ard numerical ODE methods make use only of local information about the
problem, obtained from evaluating the right-hand side of the differential
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equation. The methods which for some applications are able to take large
stepsizes are able to do this by implicitly or explicitly making use of global
information about the problem and/or its mathematical structure. For ex-
ample, it is feasible to damp the oscillation for certain mechanical systems
only because of a very specific mathematical structure. The LIN method
of molecular dynamics makes use of both the mathematics and the phys-
ics of the problem. Envelope-following methods make use of the fact that
for some problems it is known a priori that the fast solution has a single
high-frequency component.

Unlike most stiff problems, which can be solved by strongly damped impli-
cit numerical methods, effective solution of nonlinear highly oscillatory prob-
lems generally requires exploitation of the problem structure and a careful
examination of the objectives and intended use of the computation. There-
fore we have based the organization of this paper on classes of application
problems. Section 2 covers linear problems and basic concepts that are fun-
damental to understanding numerical methods for highly oscillatory prob-
lems. Section 3 deals with highly oscillatory rigid and flexible mechanical
systems, describing the nonlinear structure of these systems and implica-
tions for numerical methods, when and how the oscillation can be safely
and efficiently damped, modal analysis techniques from structural analysis,
and the problems and considerations in extending these techniques to flex-
ible multibody systems. Section 4 briefly describes problems and numerical
methods for molecular dynamics. Section 5 describes problems from circuit
analysis and orbital mechanics for which envelope-following techniques are
applicable, and describes those numerical methods.

2. Basic concepts and methods for linear oscillatory systems

Numerical methods used to treat oscillatory problems differ, depending on
the formulation of the problem, the knowledge of certain characteristics of
the solution, and the objectives of the computation (Gear 1984). However,
certain concepts are common to most classes of methods. Since it is not
possible to give a uniform presentation of these concepts, as an illustra-
tion we will consider the class of partitioned Runge-Kutta (PRK) methods
which includes standard Runge-Kutta (RK) methods and other schemes of
interest, such as the Verlet algorithm (4.2). For other classes of methods,
the definitions are analogous.

To investigate the stability properties of numerical methods applied to
oscillatory systems, the scalar harmonic oscillator equation

y" = -u2y, (u> > 0) (2.1)

is chosen as a standard test equation. This is the analogue of Dahlquist's
test equation y' = Xy for first-order ODEs, although the situation is not
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OSCILLATORY SYSTEMS 443

totally parallel to problems with large negative eigenvalues of the Jacobian
matrix. The solutions to (2.1) are given by the family of sine curves y(t) =
Asm(u>t + <f>), where the expression cut + 4> is called the phase. The real
parameters A > 0, u>, and cf> are called, respectively, the amplitude, the
pulse, and the phase-lag. The period of the solution is T := 2TT/UJ and its
frequency is / := 1/T = co/2n. The parameters A and 4> are determined
from the initial conditions. Sine curves are archetypal oscillatory functions
and they form the basis of Fourier analysis.

To apply PRK methods, we must first rewrite (2.1) as a first-order system
by introducing a new variable z := y', yielding

y' = z, z' = -u2y. (2.2)

This is one of the simplest systems for which the eigenvalues (±iu) of the
Jacobian matrix of the system are purely imaginary. This is also a lin-
ear Hamiltonian system with Hamiltonian H(y, z) = (co2y2 + z2) /2. PRK
methods take advantage of the intrinsic partitioning of the equations by
making use of the conjunction of two sets of RK coefficients. One step of an
s-stage PRK method applied to partitioned systems of the form

y' = f{t,y,z), z' = g{t,y,z),

with initial values {yo,zo) at to &nd stepsize h, is defined by
s

y\ =Vo + hY, bif(U, Yi, Zi), Z! =zQ +

= yo + h Y,
j=l 3=1

where ti := to + c%h. The coefficients (6j, a,ij,Ci) and (bi, a,ij,Ci) are the coef-
ficients of two RK methods based on the same quadrature formula (6,,Ci).
Applying the PRK method to (2.2) we get

where fi := hu, D u := diag(l,u;), and M(/i) is the 2 x 2 stability matrix of
the PRK method. This matrix is given by

V1 » °
where we have used ts to denote the s-dimensional vector ( 1 , . . . , 1)T, In for
the identity matrix in E n X n , {A, A} for the matrices of the RK coefficients,
and b for the vector of the RK weights. Other expressions for the stability
matrix can be derived with the help of Van Der Houwen and Sommeijer
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444 L. R. PETZOLD, L. O. JAY, AND J. YEN

(1989, Lemma 2.1). The exact solution to (2.2) at to + h can be expressed
by

/ y(to + h)\ r

The eigenvalues of the rotation matrix ©(//) are of modulus one. This mo-
tivates the following definition.

Definition 2.1 For a PRK method, an interval I with {0} C / C M is
an interval of periodicity if for all // € / the eigenvalues Aj(/i) (i = 1,2)
of the stability matrix M(/x) (2.3) satisfy |Aj(/^)| = 1 (z = 1,2) and, if
Ai(//) = A2(/x), then this eigenvalue must possess two distinct eigenvectors.
A method is said to be P-stable if R is an interval of periodicity.

If the interval of periodicity is not reduced to {0}, the method is usually
called nondissipative. These concepts are due to Lambert and Watson (1976)
and were originally introduced for linear multistep methods applied to y" =
g(t,y). They proved that nondissipative linear multistep methods must be
symmetric. They also stated that P-stable linear multistep methods cannot
have order greater than two. A proof of this result in a more general setting
was given by Hairer (1979). This is a result similar to the famous Dahlquist's
second barrier (Dahlquist 1963). To overcome this order barrier, several
hybrid multistep methods have been derived (Cash 1981, Chawla and Rao
1985, Hairer 1979), for instance, a P-stable modification to the fourth-order
Numerov method (Hairer 1979). For standard RK methods (A = A) the
eigenvalues of the stability matrix are simply given by Ai(/x) = -R(i/x) and
A2(/x) = R(-in) = Ai(//), where R(z) = 1 + zbT(Is - zA)~lts is the usual
stability function of the RK method. Hence, we have the following well-
known result.

Theorem 2.1 Symmetric RK methods are P-stable.

For example, the implicit midpoint rule is P-stable. However, a similar
theorem does not hold for PRK methods. For example, we can consider the
coefficients of the two-stage Lobatto IIIA-IIIB method (Jay 1996)

°
This symmetric and symplectic method is equivalent to the famous leapfrog/
Stormer/Encke/Verlet method (4.2) used for second-order ODEs. Necessary
conditions on the coefficients of the stability matrix M(//) to satisfy the
conditions of Definition 2.1 are given by

det(MQu)) = 1, | tr(M(/x))| < 2. (2.4)
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The stability matrix of the two-stage Lobatto IIIA-IIIB method is

I - n2/2 n

It satisfies det(M(//)) = 1, but only |tr(M(/x))| = |2 — fj?\. Thus, according
to (2.4) this method is not P-stable; its interval of periodicity (and of abso-
lute stability, see below) is (—2,2). As pointed out in Lambert and Watson
(1976), the relevance of the property of P-stability seems restricted to situ-
ations exhibiting periodic stiffness, that is, where the oscillatory solution
is of negligible amplitude. The reason is that the stepsize of a method is
not only limited by stability requirements but is also dictated by accuracy
requirements. A stepsize of the same magnitude as the period of oscilla-
tion with highest frequency is required even for P-stable methods to follow
this oscillation in order to preserve the accuracy of the method, unless its
amplitude is sufficiently small.

The weaker property of nondissipativity is of primary interest in celestial
mechanics for orbital computation, where it is desired that the numerically
computed orbits do not spiral inwards or outwards. In this context, a related
notion is the property of orbital stability of Cooper (1987), that is, the preser-
vation of quadratic invariants by the numerical method. The construction of
nondissipative explicit Runge—Kutta-Nystrom (RKN) methods of order two
to five with a minimal number of function evaluations per step and possess-
ing relatively large intervals of periodicity is given in Chawla and Sharma
(1981a) and (19816). In Portillo and Sanz-Serna (1995), it is shown with
an example that, for Hamiltonian systems, nondissipative methods do not
in general share the advantageous error propagation mechanism possessed
by symplectic methods (Sanz-Serna and Calvo 1994). In this framework, an
explicit symplectic method of effective order four with three function eval-
uations per step and with a maximal interval of periodicity is presented in
Lopez-Marcos, Sanz-Serna and Skeel (19956).

In certain applications, it can be desirable to leave the fast oscillation
modes unresolved. For example, in many structural dynamics applications
(see Subsection 3.5), high-frequency oscillations are spurious and should be
damped out. Hence, we can consider a less stringent notion of stability.

Definition 2.2 Replacing the condition |Aj(/z)| = 1 by |Aj(/x)| < 1 in
Definition 2.1 we define the notions of an interval of absolute stability and
of I-stability.

For standard RK methods we recover the usual definition of I-stability
(Hairer and Wanner 1996). L-stable RK methods, i.e., RK methods satis-
fying R(oc) = 0 and |i?(z)| < 1 when Re(z) < 0, such as the implicit Euler
method, may be appropriate to damp out highly oscillatory components
(corresponding to large /i) since they are I-stable and satisfy l im^oo |Aj(/Lt)|
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= 0 (i = 1,2). When the eigenvalues of the stability matrix (2.3) are con-
jugate, we can write

where p(/x) and 9(fj,) are real-valued functions. Notice that the exact solu-
tion of (2.2) in C is reproduced if p(/i) = 1 and 6(fi) = /i. Following Brusa
and Nigro (1980), we can define the functions a(fi) and &(//) by the rela-
tions p(fi) = e~^a^ and #(/z) = ^b(fi). The function a(fi) is called the
factor of numerical (or algorithmic) damping. Owren and Simonsen (1995)
have constructed families of L-stable singly diagonally implicit Runge-Kutta
(SDIRK) methods with controllable numerical damping. The expression
|6(/x) — 11 is called the frequency distortion. In the phase-lag expansion of
the relative period errorb(fi) — l = br(fi)fi

r + O(/j,r+1) with br(fi) ^ 0, the ex-
ponent r is called the dispersion order. In Van Der Houwen and Sommeijer
(1987) and (1989), several nondissipative RKN methods and diagonally im-
plicit RK (DIRK) methods with high order of dispersion are derived. On
certain test problems with oscillatory solutions, they show that the accuracy
of the method is mostly determined by its dispersion rather than by its usual
local truncation error. Other related error measures are often used in the
literature to compare the merits of different methods, such as the (relative)
amplitude (or amplification) error for 1 — p(/j,) and the phase (or period)
error (or dispersion or phase-lag) for // — 0(fi).

In addition to the natural free modes of oscillation of a system, modelled
by the harmonic oscillator equation (2.2), the presence of forcing terms of
oscillation may be considered. A simple inhomogeneous test equation in C
is given by

y" = -uPy + Se™**, (u ^ uf,uj >0,uf > 0),

where Uf/2ir represents the frequency of the forcing term. The exact solution
is

y(t) = Ae 6

It may be of interest to know how well a numerical method approximates the
second term of the solution, corresponding to the forcing term. Nevertheless,
it must be emphasized that the inhomogeneous phase error introduced by
the forcing term remains constant, whereas the homogeneous phase error
due to the free oscillation accumulates with time and is therefore the main
source of errors (Van Der Houwen and Sommeijer 1987). Methods with
no inhomogeneous phase error are said to have in-phase forced oscillations
(Gladwell and Thomas 1983).

Several different methods have been proposed for problems whose solu-
tions are known to be periodic and such that the period can be estimated
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a priori. In Section 5 we will treat in detail the envelope-following tech-
niques. Another category of methods which can be interpreted as exponen-
tially fitted methods (Liniger and Willoughby 1970) is based on the exact
integration of the trigonometric polynomials cos(lu)t), sin(£ujt) (£ = 1 , . . . , r)
with UJ fixed. Such methods depend on a parameter u approximating ui.
They are exact when UJ = u, but they may be sensitive to an inaccurate
estimate of UJ. Gautschi (1961) was the first to develop a basic theory for
linear multistep methods with modified coefficients depending on Jl := ujh.
In the limit as Ji —> 0, those methods reduce to the classical Adams and
Stormer methods. As an example, the modified two-step explicit Stormer
method of classical order p = 2 and of trigonometric order r = 1 applied to
y" = g(t, y) is given by

l 2 /2sin(/I/2)\2 .
yn+i - 1yn + yn-i = hA I h^—1-) g(tn, yn).

Methods of Nystrom and Milne-Simpson type, less sensitive to inaccuracy
in estimating UJ, can be found in Neta and Ford (1984). Using different
techniques from mixed interpolation (De Meyer, Vanthournout and Vanden
Berghe 1990), Vanthournout, Vanden Berghe and De Meyer (1990) have
constructed methods of Adams, Nystrom, and Milne-Simpson type with
an elegant derivation of their local truncation error. More general, and re-
quiring more parameters, is the exact integration of products of ordinary
polynomials and trigonometric functions with multiple frequencies given in
Stiefel and Bettis (1969) and Bettis (1970), where methods of Stormer type
are constructed. This was motivated from applications in celestial mechanics
to take into account secular effects of orbit motion. Still in the same frame-
work, the minimax methods of multistep type proposed by Van Der Houwen
and Sommeijer (1984) attempt to minimize the local truncation error over a
given interval of frequencies [a>min, wmax]- Such methods are less sensitive to
inaccurate prediction of the frequencies. However, as for all methods men-
tioned in this paragraph, the presence of perturbations superimposed on
the oscillations generally decreases dramatically the performance of these
methods. Using an approach based on the 'principle of coherence' of Hersch
(1958), numerical methods of multistep type for nearly linear ODEs are pro-
posed in Denk (1993) and (1994), but they require the exact computation
of the matrix exponential.

For certain problems with slow and fast components, multirate methods
may be applied to reduce the total computational effort. A first method is
used with one macrostep H to integrate the slow components and a second
method is applied iV times with a microstep h (H = Nh to ensure synchron-
ization) to integrate the fast components. The main difficulty with multirate
methods is the assumption, before performing a macrostep, that the split-
ting between slow and fast components is known. In a counterintuitive but
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448 L. R. PETZOLD, L. O. JAY, AND J. YEN

justified 'slowest first strategy' (Gear and Wells 1984), the slow compon-
ents are integrated first using extrapolated values for the fast components
and then the fast components are integrated using interpolated values for
the slow components. Multirate Rosenbrock-Wanner (MROW) methods are
analysed in detail in Giinther and Rentrop (1993a) and (19936). They have
constructed a four-stage A-stable method of order three with a second-order
embedded formula for error estimation. Their partitioning strategy is based
on the stepsizes predicted for each component. In highly integrated electrical
circuits applications, where most of the elements at any given time are in-
active, they also make use of some information about the neighbourhood of
the active elements to improve the performance of the partitioning strategy.
A multirate extrapolation method based on the explicit Euler method has
been developed by Engstler and Lubich (1995). An inexpensive partitioning
strategy is implemented, which consists of stopping to build the extrapola-
tion tableau for the components recognized as sufficiently accurate. Closely
related to multirate methods are multiple time-stepping (MTS) methods.
The right-hand side of the ODE is split as a sum of fast and slowly varying
functions which are evaluated at different rates (see Subsection 4.5).

In the next sections we will deal with different classes of problems ex-
hibiting oscillatory behaviour. For each class of problems we will discuss
the structure of the equations, the objectives of the numerical simulation,
the computational challenges, and some numerical methods that may be
appropriate.

3. Mechanical systems

3.1. Multibody systems

The governing equations of motion of a mechanical system of stiff or highly
oscillatory force devices may be written as a system of DAEs (Brenan,
Campbell and Petzold 1995)

M(q)q" + GT(q)\-(f
s(q',q,t) + fn(q',q,t)) = 0, (3.1a)

g(q) = 0, (3.1b)

where q = (q\,.•• , qn)
T are the generalized coordinates, q' = dq/dt the gen-

eralized velocities, q" = d2q/dt2 the generalized accelerations, A = (Ai,...,
\m)T the Lagrange multipliers, M is the mass-inertia matrix, g = (g\,...,
gm)T the holonomic constraints, and G = dg/dq. The stiff or oscillatory
force is fs = Y^f ft\ a n d fn includes all the field forces and the external
forces which are nonstiff compared to the stiff components, that is,

dfs II dfn

>> H
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The stiff force components in (3.1a) can often be written in the form

(3.2)

where r\i is smooth, i G { l , . . . , r a / } , Bt = (dr]i/dq)T, and Ki, d are the
associated stiffness and damping matrices. For some generalized coordinate
sets, the functions r\i may be linear, or even the identity. When the compon-
ents of the coefficient matrices K\ and C% are large, these force components
may cause rapid decay or high frequency oscillation in the solution of (3.1).
It is well known that the characteristics of the fast or slow solution are de-
termined not only by the modelling aspects, for example the coefficients of
the stiffness and damping matrices, but also by the initial conditions and
events that may excite stiff components in the system during the simulation.

To demonstrate some of the potential difficulties caused by highly oscil-
latory forces in mechanical systems, we consider two common oscillatory
forces: a spring force (which is exemplified by the stiff spring pendulum of
Section 1), and a 2D bushing force. The former is a very simple example of
a type of system often seen in molecular dynamics (see Section 4), and the
latter is a general form of modelling force devices in multibody mechanical
systems.

Spring force
The stiff spring pendulum of Section 1 is an example of a point-mass con-
nected to a stiff spring force. The equations of motion of the particle in
Cartesian coordinates are given by (1.1), where the spring force is given by
(xX,y\)T. This problem is highly nonlinear, due to (l.le). Since most of
the mathematical methods for oscillatory problems assume a nearly linear
form of the problem, and many numerical techniques are implicitly based on
linearization, we will begin by examining the structure of the local linearized
system. The eigenvalues of the underlying ODE of (1.1), that is, substitut-
ing (l.le) into (1.1c, l . ld), are illustrated for e = A /10" 3 in Fig. 3. The
dominant eigenvalues are ± i/e. As e —> 0, the dominant pair of eigenvalues
approaches ±oo along the imaginary axis. The other pair of eigenvalues
oscillates on the complex plane, with amplitude and frequency approaching
±oo. The amplitude of the oscillations in the eigenvalues depends on the
initial conditions for the problem. If the initial conditions are on the slow
solution, then the amplitude is zero. In Fig. 3, we have chosen the initial
conditions to be slightly off the slow solution, which is the situation for most
numerical methods. From this we can see that methods based on lineariza-
tion are likely to fail for this problem unless the stepsizes are very small or
the linearization is performed exactly on the slow solution.

In Section 1, we showed that a slow solution for this problem could be
identified by shifting to polar coordinates. One might guess that perhaps
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-10

real-axis -20 o
Time

Fig. 3. Eigenvalues of stiff spring pendulum in Cartesian coordinates, e = 10- in-i-5

the oscillation in the eigenvalues described above is due to the choice of the
Cartesian coordinate system, which is unnatural for this problem. This is
true, but only partly so. The eigenvalues along the solution trajectory in
polar coordinates are shown in Fig. 4. The dominant eigenvalues are of the
same magnitude as those in (1.1); see Fig. 3. This is because the coordinate
transformation is linear with respect to the fast moving r. The oscillation
of the other pair of eigenvalues along the real axis persists.

Bushing force
Nonlinear oscillations in general multibody systems are often generated by
forces from components such as bushings. This type of component is used
in modelling vehicle suspension systems. Unlike the spring, this element is
usually an anisotropic force, that is, it has different spring coefficients along
the principle axes of the bushing local coordinate frame. The bushing force
between body-i and body-j may be denned using the relative displacement
dij, its time derivative d\y and the relative angle 9ij and its time derivative
Otj of two body-fixed local coordinate frames at the bushing location on
two bodies. Using the vectors Sj and Sj representing the bushing location
in body-Vs and body-fs centroid local coordinate systems, respectively, we
have
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eigenvalue 1 eigenvalue 3

real-axis -0.01 0

eigenvalue 4

real-axis -10 0

eigenvalues 1-4

;-0.5

0.5
real-axis -10 0 ( j m e real-axis -10 0

Fig. 4. Eigenvalues of stiff spring pendulum in polar coordinates, e = 10~15

where the orientation transformation matrices

A _
k ~

are

-sin(0fc)
sin((?fc) cos(^)

and (xk,yk,9k) are coordinates at body-fixed frames. The bushing force
can then be written as

and the applied torque is

kx 0
0 ky ~r" -f*-i 0 c

y
Td!ATd!

at

where kx, ky, and ke are the spring coefficients associated with the x, y, and
6 coordinates, and (f, cy, and ce are the corresponding damping coefficients.

An example of a simple mechanical system incorporating this force may
be obtained from this model using unit mass-inertia and gravity, and setting
the bushing location on the body to s = (—1/2,0). A bushing element with
no damping, attached at the global position of (1/2,0), yields

o =

= V"+k,(y-'jfiy1,
(3.3a)

(3.3b)
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0 = r + kee -
cos(0)

cos(0)
(3.3c)

fc" (y -
sin(0)

It can be seen from (3.3) that the local eigenstructure of the system may
change rapidly, depending on the size of the stiffness coefficients. Using
the initial values (x,y,6) = (1.1,0.1,0.0) with (kx,kv,ke) = (104,104,103),
the solution of (3.3) exhibits high-frequency oscillations in all variables, as
shown in Fig. 5. Solving the eigenvalue problem of (3.3) at each time-step
yields three pairs of eigenvalues as illustrated in Fig. 6.

0.2 0.4

Fig. 5. Bushing problem in Cartesian coordinates

Structure of limiting DAE
Another source of difficulties for the numerical solution arises from the struc-
ture of stiff multibody systems. These systems are singular singular perturb-
ation problems (O'Malley 1991). In the limit as the fast timescale tends to
infinity, the system becomes a high-index DAE. For example, as e —» 0 in the
stiff spring pendulum problem (1.1) or (1.2), the equations become those of
a rigid pendulum. This index-3 DAE has a Hessenberg structure. Numerical
solution of high-index DAE systems of Hessenberg structure has been extens-
ively studied (Brenan et al. 1995, Hairer, Lubich and Roche 1989, Hairer and
Wanner 1996). There are well-known difficulties with numerical accuracy,
matrix conditioning, error control, and stepsize selection. Roughly speak-
ing, the higher the index of a DAE, the more difficulties for its numerical
solution. Hence, it is not surprising that there would be difficulties for the
numerical solution of highly oscillatory mechanical systems.
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initial condition [1.1,0.1,0.0], k*x=k«y=10M, kAz=10A3

-0.5

real-axis

Fig. 6. Eigenvalues of bushing problem

3.2. Finding the slow solution

Given the situation of a rapidly changing local eigenstructure, perhaps the
simplest strategy for numerical solution is to consider damping the oscil-
lation, when it is of sufficiently small amplitude, via highly stable implicit
numerical methods. First, we want to emphasize that damping the oscil-
lation for general nonlinear systems is not safe and can easily lead to an
erroneous solution! However, the system may have a very special structure
such that this approach is appropriate.

Lubich (1993) has shown that the numerical solution of stiff spring mech-
anical systems of a strong potential energy (for instance, a stiff spring force
such as in (1.1)) by a class of implicit Runge-Kutta methods with step-
size independent of the parameter e, converges to the slowly varying part
of the solution. These results have been extended to a class of multistep
Runge-Kutta methods (Schneider 1995). Unfortunately, it is not clear that
these results may apply directly to all the types of oscillatory components
in multibody systems. As indicated in Lubich (1993), the representation of
stiff or oscillatory components in an appropriate coordinate system is not
always possible, that is, the constraints associated with the stiff or oscillat-
ory potential force can be difficult to obtain in general. Nevertheless, for
(3.1), an approximation of the dynamics of such local coordinates can be
obtained for oscillatory force components of the form (3.2).

The amount of damping in a highly stable implicit method is controlled
by the stepsize; for the types of methods that one would consider using
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for this purpose, the damping increases with the stepsize. One might hope
that the automatic stepsize selection mechanisms used in variable-stepsize
ODE/DAE codes would increase the stepsize whenever the magnitude of
the oscillation is small compared with the local error tolerances. This works
well, but only if the usual error control strategy is changed to one that is
appropriate for the limiting high-index DAE.

There are also difficulties with Newton convergence for implicit numerical
methods applied to highly oscillatory nonlinear mechanical systems (Lubich
1993, Yen and Petzold 1997). The Newton iteration at each time-step does
not converge for large (relative to the period of the high-frequency oscilla-
tion) stepsizes. The problem is due to the linearization on which Newton's
method is based. With the eigenstructure of the local Jacobian matrix chan-
ging so rapidly, Newton's method does not yield good directions to the slow
solution unless the initial guess (prediction) is extremely accurate; such an
accurate initial guess can only be attained by using very small stepsizes.
Some variables can be predicted more accurately than others. Variables
that play the role of Lagrange multipliers in (3.1) are not predicted well by
polynomial extrapolation, which is used in many ODE/DAE codes. This is
not surprising: these variables depend directly on the second derivatives of
the highly oscillatory position variables.

Yen and Petzold (1997) have recently proposed a coordinate-split formula-
tion of the equations of motion which eliminates difficulties due to obtaining
an accurate predictor for the Lagrange multiplier variables, because these
variables are no longer present in the computation. These methods are par-
ticularly effective for oscillatory multibody systems with components such
as the stiff bushing. The coordinate-split formulation is described as follows.
Direct numerical integration of the index-3 DAE (3.1) suffers from the well-
known difficulties inherent in the solution of high-index DAEs. One way to
lower the index involves introducing derivatives of the constraint g(q), along
with additional Lagrange multipliers fi. This yields the stabilized index-2 or
GGL formulation of the constrained equations of motion (Gear, Gupta and
Leimkuhler 1985)

q' -v + GT(q)fj, = 0, (3.4a)

M(q)v' + GT(q)\-f(v,q,t) = 0, (3.4b)

G(q)v = 0, (3.4c)

g{q) = 0, (3.4d)

where v = q' and / = fs+fn, which has been used widely in simulation. The
Lagrange multiplier variables A and fj, fulfil the role of projecting the solution
onto the position (3.4d) and the velocity (3.4c) constraints, respectively.
Many of the numerical methods for multibody systems solve the system
(3.4) directly. It is also possible to eliminate the Lagrange multipliers and
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reduce the size of the system to the number of degrees of freedom. One way
to accomplish this begins with the stabilized index-2 system (3.4). Suppose
that G(p) is full-rank on the constraint manifold M. = {q € R" : g(q) =
0}. Then one can find an annihilation matrix P(q) <E R(«-m)x" such that
P(q)GT(q) = 0, for all q <E M. Premultiplying (3.4a) and (3.4b) by P{q)
yields an index-1 DAE

P{q){q'-v) = 0, (3.5a)
P(q)(M(q)v'-f(v,q,t)) = 0, (3.5b)

G(q)v = 0, (3.5c)
g(q) = 0. (3.5d)

An important practical consequence of (3.5) is that (//, A) have been elim-
inated from the DAE, via multiplication of (3.4a, 3.4b) by the nonlinear
P(q). Thus, the error test and the Newton iteration convergence test in a
numerical implementation of (3.5) no longer need to include the problematic
Lagrange multipliers (fi, A).

The coordinate-split method gives an inexpensive way to find P(q) via
a splitting of the Cartesian basis (Yen and Petzold 1996). Discretizing the
coordinate-split formulation by an implicit method like BDF or an implicit
Runge—Kutta method, it seems at first glance that the local Jacobian mat-
rix might be difficult to compute, because it involves derivatives of P(q).
However, this is easily overcome by using the formulae for the derivative of
a projector given by Golub and Pereyra (1973) and the resulting method
lends itself to efficient implementation.

The performance of damped numerical methods for highly oscillatory
mechanical systems is improved by using the coordinate-split formulation.
However, for problems with very high-frequency oscillations, there are still
difficulties for Newton convergence. To obtain rates of convergence which
are independent of the frequency of the oscillation, Yen and Petzold (1997)
have introduced a modification to the Newton iteration, that is, the modified
coordinate-split (CM)-iteration. The basic idea of the CM-iteration is that
there are terms in the Jacobian which involve derivatives of the projection
onto the constraint manifold. These terms are large and complicated to com-
pute, but small on the slow solution. For example, applying a (low-order)
BDF formula to (3.5) yields the nonlinear system

P(qn)h(Phqn - vn) = 0, (3.6a)
P(qn)h(M(qn)phvn- f{vn,qn,tn)) = 0, (3.6b)

G(qn)vn = 0, (3.6c)

9(qn) = 0, (3.6d)

where ph is the discretization operator, and h is the stepsize of the time
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discretization. Given an initial prediction (qb ,Vn ) , applying Newton-type
methods to (3.6) requires the solution of a linear system

J(qn,vn)(Aqn,Avn) = -r(qn,vn)

such that Aqn and Avn are the increments of qn and vn,

/ P(n.M(dGT(i"hs, -ufe%taal -hP(qn)

J(qn,vn) =

V G{qn)

and

r(qn,vn) =

where sx = -(GY)~TYTri, s2 = -(GY)-TYTr2, n = h(phqn - vn), and
r2 = h(M(qn)pflvn — f(vn,qn,tn)). The terms which cause the Newton
convergence problem are those involving si and s2- Away from the slow
solution, small perturbations in the positions can result in large changes in
these terms, leading to convergence difficulties for the Newton iteration. The
CM-iteration sets these terms to zero, yielding a reliable direction towards
the slow solution for the Newton-type iteration. Convergence results for
the CM-iteration are given in Yen and Petzold (1997). For nonoscillatory
mechanical systems, the convergence behaviour of the CM-modification is
similar to that of standard Newton.

For nonlinear mechanical systems with small-amplitude, high-frequency
oscillations, the CS formulation combined with a highly stable implicit meth-
od to damp the oscillations and the CM-modification to the Newton iteration
can be highly effective. A two-body pendulum problem in 2D Cartesian co-
ordinates, with a bushing force, as given in Subsection 3.1, which is the
source of the high-frequency oscillation, is described in Yen and Petzold
(1997). In experiments at very high frequencies using the BDF code DASSL
(Brenan et al. 1995) with the method order restricted to two, the CS for-
mulation is solved twice as efficiently as the GGL formulation (3.4). The
CM modification to the Newton iteration further improves the efficiency
by a factor of more than a hundred. At lower frequencies, of course, the
comparison is less dramatic.

An alternative to numerical methods that use damping to find the slow
solution is to approximate the slow solution directly. Reich (1995) has ex-
tended the principle of slow manifold, which has been widely used in the
approximation of multiple timescale systems (Fenichel 1979, Kopell 1985),
to the DAEs of multibody systems with highly oscillatory force terms. Al-
gebraic constraints corresponding to the slow motion were introduced with

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002750
Downloaded from https://www.cambridge.org/core. The University of Iowa, on 24 Oct 2019 at 22:21:00, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002750
https://www.cambridge.org/core


OSCILLATORY SYSTEMS 457

a relaxation parameter to preserve the slow solution, while adding flexibility
to it in the slow manifold approach.

3.3. Flexible multibody mechanical systems

The numerical solution of flexible multibody systems is required for non-
linear dynamic analysis of articulated structures. The need for modelling
deformable bodies has been kindled by the dynamic simulation of physic-
ally large and massive mechanisms, such as aeroplanes, industrial robots
and automobiles. These are structures in which kinematic connections per-
mit large relative motion between components that undergo small elastic
deformation. A source of difficulty in the solution of flexible multibody
equations of motion is the coupling between the elastodynamic equations
and the gross motion. The methods for analysing flexible mechanisms can
generally be divided into two categories:

(i) methods that focus on the structure, while using the gross multibody
motion as a source of dynamic loading

(ii) methods that incorporate flexibility effects into the multibody dynamic
analysis.

Simulation of flexible multibody systems has been an active research topic
for the last two decades. Many of the methods for flexible multibody sys-
tems have been implemented in multibody dynamic analysis codes (Haug
1989, Nikravesh 1988, Pereira and Ambrosio 1993). For such systems, an
important feature of the solution is the nonlinear oscillations induced by the
elastodynamics equations. Moreover, since the governing equations of flex-
ible multibody systems are often modelled using algebraic constraints, the
numerical solution of DAEs is required. As discussed in the two previous
subsections, the numerical solution of the resulting highly oscillatory DAEs
presents many challenging problems.

Modelling of flexibility effects in multibody systems can significantly al-
ter the dimension and solutions of the governing equations of motion. It
is well documented that adding flexible components to rigid body models
can drastically increase the computational complexity. For instance, a typ-
ical rigid-body model of a ground vehicle, such as a passenger car, may
consist of several rigid bodies of 10-100 coordinates. Replacing the chassis
of the car with its flexible model can increase the number of coordinates
to millions. Compounding the difficulty of an increased dimension are the
high-frequency oscillations that arise from the modal stiffness and damping
coefficients. They represent both the physical and geometrical approxim-
ations of the elastic, plastic, and viscoelastic effects of the flexible bodies,
and their eigenvalues are usually of magnitudes greater than those of the
gross motion. It has been shown for some flexible multibody systems that
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the coupling of unresolved high frequencies to the rigid motion may result
in a nonlinear instability. In Simo, Tarnow and Doblare (1993), the nu-
merical simulation of a flexible rod illustrates the nonlinear instability in
Hamiltonian systems. For nonconservative flexible mechanisms, such prob-
lems can be found in the approximation of the deformation of elastic bodies
in constrained multibody systems (Yoo and Haug 1986, Yen, Petzold and
Raha 1996). Special care must be taken to maintain the stability of the
oscillatory components in the solution. In the following, we give an over-
view of the numerical techniques used for handling oscillations in flexible
multibody systems. We begin with a summary of computational methods
used in structural dynamics.

3.4- Modal analysis of structures

Applying spatial discretization to the elastomechanical PDE, the dynamic
equations of the response of a discrete structural model are given by

Meu" + Ceu' + Keu = f(t), (3.7)

where u is the nodal displacement, f(t) is the load, and Me, Ce, and Ke

are constant mass, damping, and stiffness matrices of the node coordinates,
respectively. Numerical methods have been developed based on spectral
decomposition of this linear ODE system. Rewriting (3.7) as a first-order
ODE, we obtain

0 M M d / U ' \ / - M e 0 \ / « ' \ _ / 0
M e C e ) d * [ u ) + { 0 K* ) { u ) - { f(t)

Denoting z = (u1, u)T, the solution of (3.8) can be written explicitly,

z = e-tAzo + F(t), (3.9)

where ZQ and F(t) are two vectors that depend on the initial values and
loading function, and

. _ / 0 Me \~l ( -Me 0
\ Me Ce J \ 0 Ke

Using (3.9), numerical solution techniques for (3.7) can be unified in the
framework of approximating the exponential of the matrix A times a vector.

A straightforward approach for dealing with the high frequencies in (3.7) is
to truncate the higher eigenmodes, which were obtained from the generalized
eigenvalue problem of the matrix Ke — u2Me (Bathe and Wilson 1976, Craig
and Bampton 1968). For most structures the eigenvectors, or normal modes
<j>i, span the nodal coordinate space, and form the coordinate transformation,
for instance the modal matrix, from the nodal coordinates u to the modal
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coordinates n,
N

<t>irn = $?i. (3.10)

Note that the nodal and modal coordinates in (3.10) are those corresponding
to the undamped system of (3.7).

To approximate the harmonic frequencies of (3.7) with fewer modes, one
can apply the Rayleigh-Ritz method to the undamped system, employing the
Rayleigh quotient and Ritz vectors (Bathe and Wilson 1976). In contrast to
the mode-superposition method, which requires all the natural frequencies
(eigenvalues) and modes (eigenvectors) to satisfy

(Ke - tofM6)^ = 0, for i = l,2,...,N,

the Rayleigh-Ritz method allows the use of a few shape vectors (Ritz vec-
tors) to approximate the solution of (3.7). For some classes of problems, the
Rayleigh-Ritz method is more efficient than eigenvector mode superposition
methods for computing the dynamic response of (3.7). Efficient numerical
procedures have been developed for determining a set of lowest orthonormal-
ized Ritz vectors (Chen and Taylor 1989, Wilson, Yuan and Dickens 1982).
For flexible multibody simulation, the oscillatory solution can be eliminated
by removing the high modes, provided that the reduced structural model is
consistent. More precisely, the deformations at the locations of kinematic
joint and force attachment nodes must be taken into account for some proper
mode shapes, for instance constraint or attachment modes (Craig 1981).

For damped systems, the aforementioned methods assume proportional
damping or, more generally, modal damping of (3.7) (i.e., that the damping
matrix satisfies 4>fCe(f>j = 0, i ^ j) for lack of a more realistic representation
in many of the structural models. This approach may be too simplistic to be
effective in some applications. A general approach to the numerical solution
of (3.7) solves the generalized unsymmetric eigenvalue problem (Lanczos
1950), where the equations of dynamic equilibrium are first transformed
into a first-order system (3.8) (Nour-Omid and Clough 1984). The develop-
ment of numerical solution techniques for this problem has been one of the
most active research topics in iterative solution of linear systems (Freund,
Golub and Nachtigal 1992). Some efficient numerical methods developed in
recent years are based on Krylov subspace approximations to (3.9) (Fries-
ner, Tuckerman, Dornblaser and Russo 1989, Gallopoulos and Saad 1992).
Such Krylov subspace approximations have been used in structural dynam-
ics (Nour-Omid and Clough 1984) and chemical physics (Park and Light
1986). A recent study (Hochbruck, Lubich and Selhofer 1995) indicated
that a class of exponential integrators has favourable properties in the nu-
merical integration of large oscillatory systems. What remains to be seen is
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an effective application of these exponential integrators for simulating large
flexible mechanisms.

Another approach to incorporating flexible components in multibody dy-
namics is to use nonlinear beam theory, which applies finite element approx-
imation to the forces resulting from body deformation (Hughes 1987, Simo
and Vu-Quoc 1986, Cardona and Geradin 1993). An appropriate nonlinear
beam formalism requires in many cases incorporating geometric nonlinear
effects such as geometric stiffening, which contribute inertia forces to the
global motion. The approximation of the inertia force due to geometric non-
linearity usually depends on the nodal position and velocity, for instance, the
damping and stiffness matrices of (3.7) become nonconstant. In some cases,
these nonlinear forces introduce additional oscillations, which can hinder
efficient numerical solution of flexible multibody systems (Simeon 1996).

3.5. Numerical integration methods

Time integration algorithms for solving structural dynamics problems have
been developed since the late 1950s (Newmark 1959). General requirements
and the foundations of these methods have been well documented (Bathe
and Wilson 1976, Chung and Hulbert 1993, Hilber, Hughes and Taylor 1977,
Hoff and Pahl 1988, Wood, Bossak and Zienkiewicz 1980). Although their
main application area is to linear structural dynamics, these methods can
be directly applied to initial value problems of nonlinear second-order ODEs

q" = f(q',q,t). (3.11)

Accuracy and stability analysis hold for the numerical methods, provided the
discretized nonlinear equations have been solved accurately, that is, within
a small enough tolerance. For example, the HHT-a method (Hilber et al.
1977) for (3.11) is given by

an+i = (1 -f a)fn+i - afn, (3.12a)

qn+i = qn + hvn + h2((--/3)an + Pan+l), (3.12b)

vn+i = vn + h((l-j)an + jan+i), (3.12c)

where h is the stepsize, a G [—1/3,0], f3 = (1 — a) 2 /4 , and 7 = 1/2 - a.
It is well known that the HHT-a family is second-order accurate and A-
stable. Numerical damping is maximum for a = —0.3, and zero for a = 0.
Controllable numerical damping and unconditional stability are needed to
deal with the high-frequency modes which often result from standard finite
element spatial discretization. For nonlinear oscillations, these properties
are also required in the solution of flexible multibody systems. Rather than
using ad hoc mode-selection processes, this approach is desirable because
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the elimination of higher frequencies is controlled by selection of the method
parameters.

Recent work has dealt with extending these types of methods to treat
flexible multibody systems (Cardona and Geradin 1989, Yen et al. 1996).
The basic form of constrained multibody equations of motion is given by
(3.1), which is a DAE of index-3. Due to the problems of numerical instabil-
ity in solving index-3 DAEs, most of the solution techniques for (3.1) have
been developed using differentiation of the constraints (3.1b). Assuming
that M is invertible, direct application of (3.12) to the underlying ODE of
(3.1) (Fiihrer and Leimkuhler 1991), for instance,

q" = 4>(q',q,t) = M-\q){f{q'\q,t) - GT(q)X), (3.13)

where

A = {GM^G7)-1 (GM~lf +

can be carried out. However, the numerical solution will not generally pre-
serve the constraint (3.1b) and its derivative. To enforce the constraints, the
numerical solution should be projected onto the constraint manifold. Ap-
plying the method of Lagrange multipliers to combine the projection with
the solution of (3.13), which has been discretized using (3.12), leads to the
DAE a-method (Yen et al. 1996)

Mn+i(qn+i -

Mn+i(vn+i •

- qn) - (3h .

- Vn) ~ jh,

fn+l + Gn+1Vn+i

fn+l + G%+1Hn+l

Gn+ivn+i

9(Qn+l)

= o,
= o,
= o,
= o,

(3.

(3.

(3.

(3.

14a)

14b)

14c)

14d)

where (3 = /3(1 + a) , 7 = 7(1 + a) ,

Qn = Qn + hvn + Y? ( ( - - (3 ) an - Pa4>n

Vn = Vn + h ((1 -

4>n = M~l(fn - G^\n), a0 = <f)0 and an = (1 + a)<j)n + a</>n-i for n >
1. The algebraic variables vn+\ and /in+i in (3.14) comprise h2(3\n+i and
the corresponding correction terms, which project the position and velocity
variables onto the constraint manifold. A convergence analysis of (3.14) was
given by Yen et al. (1996).

The DAE a-methods are most effective when combined with the CS for-
mulation and CM iteration described earlier. In the Lagrange multipliers
formulation there may be convergence difficulties with the Newton iteration.
Premultiplying (3.14a) and (3.14b) by the CS matrix P(q) yields

P(qn+1)(Mn+1{qn+1-qn)-ph2fn+1) = 0, (3.15a)
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P(qn+1)(Mn+1(vn+1 - vn) - jhfn+1) = 0, (3.15b)

Gn+1vn+1 = 0, (3.15c)

g(qn+1) = 0. (3.15d)

Accuracy and stability of the a-methods for ODEs are preserved. More im-
portantly, the high-index variables (fn+i, Mn+i), which exhibit high-frequen-
cy oscillations of large amplitudes, are not present in (3.15). Compared to
the Lagrangian form (3.14), much improved Newton convergence was ob-
served in a number of flexible multibody simulations (Yen et al. 1996). When
applying strong numerical damping to the higher modes, the CM iteration
illustrated even better convergence in these examples.

4. Classical molecular dynamics

Classical molecular dynamics (MD) has become an important tool in the
study of (bio)molecules, such as nucleic acids, polymers, and proteins (Allen
and Tildesley 1987, Board Jr., Kale, Schulten, Skeel and Schlick 1994, Ger-
schel 1995). In classical MD, quantum effects are neglected and the motion
of the atoms is often described by Newton's equations

q1 = v, Mv' = -VU(q), (4.1)

where the vector q contains the Cartesian coordinates of the atoms, the vec-
tor v contains their velocities, M is the diagonal matrix of atomic masses,
and U(q) is a semi-empirical potential energy function. Denning the mo-
menta p := Mv, these equations form a Hamiltonian system with Hamilto-
nian H(q,p) := ^pTM~1p + U(q). Therefore, the Hamiltonian (the energy)
and the symplectic form dq A dp are invariant under the action of the flow
(Arnold 1989). More sophisticated dynamics are also often considered in
MD simulation. In Langevin dynamics (4.5), stochastic and friction forces
are introduced to model additional aspects (see Subsection 4.4). In Nose dy-
namics, temperature and pressure constraints are included to treat nonequi-
librium situations (Nose 1984, Hoover 1991).

The potential energy function U(q) is generally given by a repeated sum
over the atoms of pairwise potentials modelling interactions of diverse type
(Gerschel 1995): electrostatic, dipolar, polar, dispersive, repulsive, etc. The-
se interactions vary with the interatomic distance and have different ranges
of influence: localized for the covalent bondings, short-range for the Van
der Waals forces, and long-range for the electrostatic forces. They also
differ in their strength and timescale, making the dynamics of (bio)molecules
very complex, even chaotic. The equations of MD are highly nonlinear and
extremely sensitive to perturbations. A perturbation grows roughly by a
factor of 10 every picosecond (= 10~12[s]). Therefore, due to various sources
of approximation and error in MD simulation, it is not reasonable from the
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viewpoint of forward error analysis to ask for an accurate representation of
the molecular configuration after several picoseconds. The framework of MD
is actually statistical mechanics. To emphasize this point, let us mention
that the initial velocities of the atoms of a (bio) molecule are usually chosen
randomly to follow a Boltzmann-Maxwell distribution. What is actually
desired in MD is to generate a statistically acceptable motion or to obtain
a good sampling of phase space over sufficiently long periods of time to
provide spatial and temporal information; it is not usually necessary to
follow an exact trajectory. Monte Carlo simulation, by generating random
configurations, is another technique used in the study of molecular systems
based on their statistical properties, but this falls outside the scope of this
article. For large (bio)molecules, MD simulation is usually preferred.

Conformational changes of a (bio)molecule arise on a continuum from
1 [ps] to 102 [s]. In MD simulation the main difficulty in the integration of the
equations is the presence of a spectrum of very high-frequency oscillations
of Brownian character. The fastest vibrations are the bond stretchings and
the bond-angle bendings which are orders of magnitude stronger than the
other interactions. For example a C-H stretch has an oscillation around
an equilibrium position of approximate frequency 0.9-1014[Hz] (Streitwieser
Jr. and Heathcock 1985). This imposes a severe limit on the stepsize used
by standard integration schemes in order to resolve these high-frequency
oscillations; for example, a stepsize around l[fs] (= 10~15[s]) is necessary for
the widely used Verlet algorithm (4.2). Computing the forces for a large
system at each step is computationally expensive. Therefore, with today's
computer technology this stepsize constraint limits the horizon of integration
to the order of a nanosecond (= 10~9[s]), several orders of magnitude less
than the biological timescale for which phenomena like protein folding («
lO"1^]) take place. Decreasing the ratio of force evaluation per step is
therefore a major goal to speed up the integration.

There are three ways of handling the high-frequency components in MD:
resolve them, model their effects, or suppress them. Methods combining
these different approaches are of course possible. The desire is that the
dynamics should be correctly reproduced from the point of view of statistical
mechanics. A recent detailed survey on MD integration methods is Schlick,
Barth and Mandziuk (1997); other references are Skeel, Biesiadecki and
Okunbor (1993) and Leimkuhler, Reich and Skeel (1995). In this section we
will briefly present different approaches, stressing some of their strengths
and weaknesses.

4-1- The Verlet algorithm

The most commonly used method in MD is the Verlet algorithm (Verlet
1967). Using the momenta p = Mv, this explicit second-order method
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applied to (4.1) can be expressed as follows:

Pn+l/2 = Pn~ g
l (4.2)

Pn+1 = Pn+l/2 ~ 2

Given the inaccuracy of the governing force field, such a low-order integra-
tion method is adequate in MD. Besides being relatively easy to program,
this method possesses several attractive features. It preserves two import-
ant geometric properties of the flow: symplecticness and reversibility under
the involution p t—> —p. For more details about symplectic discretization
we refer the reader to Sanz-Serna (1992) and Sanz-Serna and Calvo (1994).
The main interest in preserving the symplectic structure of the flow lies
in the following result of mixed backward-forward error analysis: for con-
stant stepsizes the numerical solution of a symplectic method can be in-
terpreted over long-time intervals as being exponentially close to the exact
solution of a perturbed Hamiltonian system (Hairer 1994, Hairer and Lubich
1997, Reich 1996a). This long-time stability property is the main distinction
of the Verlet algorithm, compared to nonsymplectic methods used in MD
for short-time integration, such as the Beeman algorithm (Beeman 1976).
When applied to the harmonic oscillator (2.2), the Verlet algorithm also
possesses the largest relative interval of periodicity among explicit RKN
methods (Chawla 1985). However, its use with variable stepsizes destroys
not only the aforementioned backward-forward error result but also the ex-
istence of an interval of periodicity (Skeel 1993). Nevertheless, a strategy
has been discovered recently by Hairer (1996) and Reich (1996a) combin-
ing variable stepsizes with symplectic integration: the symplectic method is
simply applied with constant stepsizes to a modified Hamiltonian function
s(q,p) (H(q,p) — H(qo,po)) where the scaling function s(q,p) corresponds
to a time-reparametrization of the original Hamiltonian system.

Since the Verlet method is explicit, the stepsize is usually limited to ap-
proximately l[fs], to resolve the high-frequency vibrations. As for other
symplectic integrators, resonance phenomena at certain stepsizes have also
been observed (Mandziuk and Schlick 1995). At those given stepsizes, large
fluctuations of energy or even instability may occur due to repeated sampling
of a component at certain points.

4-2. Implicit symplectic methods

To overcome the stability barrier of the explicit Verlet algorithm while pre-
serving its favourable long-time stability property, it is tempting to consider
the application of implicit symplectic methods, for instance the implicit mid-
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point (IM) rule. Applied to (4.1), one step of IM is given by the solution of
a nonlinear system

qn+\ = qn+ 2 (vn

vn+1 = vn-

Having to solve a nonlinear system is the major drawback of implicit meth-
ods. Here, the solution can also be seen as a minimum of an optimization
problem, for instance, for IM qn+\ is a minimum of a 'dynamics function'

:=\i.q-qn- hvn)
TM(q - qn - hvn) + h2U ( ^ ^ ) • (4.3)

Therefore, optimization techniques can be applied (Schlick and Fogelson
1992).

The IM method is known to be P-stable. However, in the limit of large
stepsizes, the high-frequency oscillations are misrepresented by being aliased
to one lower frequency. Moreover, as for the Verlet algorithm, instability at
certain stepsizes may occur due to numerical resonance. Recently, Ascher
and Reich (1997) have shown that, for implicit symmetric schemes applied
to highly oscillatory Hamiltonian systems, unless the stepsize is restricted
to the order of the square root of the period of the high-frequency oscil-
lation, then even the errors in slowly varying quantities, like energy, can
grow undesirably. This error growth is due to the fact that, at large step-
sizes, the numerical method fails to accurately represent the time-dependent
transformation that decouples the system into a slowly varying and highly
oscillatory part (for example, the transformation from Cartesian to polar co-
ordinates in the stiff spring pendulum). In Skeel, Zhang and Schlick (1997),
a general one-parameter family of symplectic integrators has been studied
in detail, including the explicit Verlet method and several implicit methods:
IM, the trapezoidal rule, the Numerov method, and the scheme LIM2 of
Zhang and Schlick (1995). Although the interval of periodicity of impli-
cit symplectic methods is larger than that of the Verlet algorithm, implicit
methods do not seem competitive in MD. Even when solving the nonlinear
equations in parallel by functional iterations, the two-stage implicit Gauss
RK method has been found on a standard test problem involving long-
range forces to be less efficient than the Verlet algorithm (Lopez-Marcos,
Sanz-Serna and Diaz 1995a). Implicit symplectic methods are not recom-
mended for resolving high-frequency oscillations efficiently, because of their
large overhead for only a modest increase in the allowable stepsize.
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4-3. Constrained dynamics and the Rattle algorithm

As mentioned previously, the highest frequencies in MD are due to the bond
stretchings and to the bond-angle bendings. The potential due to these
bonds can be expressed as follows,

Uhond(q) = l-gT{q)Kg(q), (4.4)

where K is a diagonal matrix of large force constants and the vector g(q)
contains the stretches r(q) — f and the angle bends <f)(q) — </>, where f and
<f> are equilibrium values. The potential U{q) can thus be decomposed as
U(q) = V(q) + t/bond(<?)- Introducing the new variable A := Kg(q), we can
rewrite the corresponding Hamilton's equations as follows:

q' = M-lp, p' = -VV(q)-GT(q)\, K-1X = g(q),

where G(q) := gq(q). If the elements of K are all of the same size and are
very large compared to ||Vqg||, the last equation can be replaced by holonomic
constraints

0 = g(q).

Mathematical conditions under which this approach is legitimate have been
analysed in detail by Bornemann and Schiitte (1995&). Constraining the
bond interactions has the effect of suppressing the presence of the high-
frequency oscillations associated with them, hence of allowing an increase
in the stepsize at the cost of some added complexity per integration step.
We have obtained a system of DAEs of index 3 where A plays the role of
a Lagrange multiplier (Brenan et al. 1995, Hairer and Wanner 1996, Jay
1996). Differentiating the constraint equations twice, we get two additional
constraints:

0 = G(q)M-lp,

0 = Gq(q

To integrate the above DAE system numerically, a generalization of the
Verlet algorithm is given by the Rattle algorithm (Andersen 1983)

Pn+l/2 = Pn--.

Qn+1 = Qn + hM~ Pn+i/2,

0 = g(qn+i),
h

Pn+1 = Pn+l/2 - ^

0 = G{qn+i)M-lpn+l.
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The computation of the projected value pn+\ can actually be avoided by
using the relation

Pn+l/2 = Pn-1/2 ~ h (W(qn) + GT(qn)A*n)

which is the basis of the Shake algorithm (Ryckaert, Ciccotti and Berendsen
1977). The method is semi-explicit in the sense that it requires only one
evaluation of VV(g) per step. The above equations form a nonlinear system
for the Lagrange multiplier A* which can be solved iteratively. The Shake
iterations consist of a combination of Newton and Gauss-Seidel iterations.
An overrelaxation procedure that may improve the performance of the Shake
iterations by up to a factor two has been advocated in Barth, Kuczera,
Leimkuhler and Skeel (1995).

From a physical point of view, constraining a bond corresponds to freezing
the interaction. The dynamics of the constrained system is called the slow
dynamics (Reich 1994). Whereas this approach seems appropriate for bond
stretchings, it is inappropriate for bond-angle bendings since the original
dynamics is altered (Van Gunsteren and Karplus 1982). The justification in
MD for a constrained dynamics borrows arguments from mathematics and
statistical mechanics. From a mathematical point of view, one is interested
in a running average of the solution

t - s \ { q(t)
)pa(t) ) - a Loo P{ a ) \p(t)

for 0 < a <C 1 with an appropriate weight function p, for example,

p(x) - {
P l ' ~ \ 0 otherwise.

The goal is to find the dynamics of (q^(t),p^(t)) for e
called the smoothed dynamics (Reich 1995, Schiitte 1995) and which gener-
ally differs from the slow dynamics. By introduction of an additional soft
potential W(q) aimed at correcting the dynamics of the constrained system,
the smoothed dynamics can be reestablished. The establishing of the cor-
recting potential has been the subject of recent controversy (Bornemann and
Schiitte 19956, Bornemann and Schiitte 1995a, Reich 19966). A standard
correction is given by the Fixman potential (Fixman 1974)

WF(q) = ^ log (det

where ks is the Boltzmann constant and T is the temperature. The compu-
tation of the Fixman potential is rather expensive in practice, but it can be
simplified by approximating the matrix G(q)M~1GT(q) by block-diagonal
parts (Reich 1997). To improve the correction it has also been proposed to
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replace the hard constraints 0 = g{q) by soft constraints (Reich 1995)

0 = g(q) = g(q) + K-1 (G{q)M-lGT{q))

restoring some flexibility in the dynamics (Reich 1997). The controversy
about the correctness of the Fixman potential seems to be due to the intru-
sion of physical arguments in its derivation. The principle of equipartition of
energy of statistical mechanics (Diu, Guthmann, Lederer and Roulet 1989)
used to derive the Fixman potential (Fixman 1974, Reich 1995, Reich 1997)
is the likely source of the controversy, because of the hypothesis of ergodicity
postulated in statistical mechanics.

4-4- Normal-mode techniques in Langevin dynamics

To take into account the effects of a heat bath, of the constant energy transfer
between the slow and fast degrees of freedom due to molecular collisions, and
of various simplifications in the model, a more realistic dynamics in MD is
reflected by the Langevin dynamics. The Langevin equations are given by

q' = v, Mv1 = -VU(q) - -yMv + ((t), (4.5)

where 7 is a collision frequency (friction) parameter and £(£) is a random
force chosen to counterbalance the frictional damping to establish temper-
ature equilibrium. One of the main motivations for the Langevin/implicit-
Euler/normal-mode (LIN) method of Zhang and Schlick (1993) is to mit-
igate the undesirable severe high-frequency damping of the implicit Euler
method, which may alter the dynamics, while maintaining its ability to take
large stepsizes (Peskin and Schlick 1989). In LIN the solution is decomposed
into fast and slow components, that is, q = qf + qs. A linear approximation
to the Langevin equations is used for the fast components

q'f = vf, Mv'f = -VU{qr) - H(qr)(qf - qr) ~ jMvf + ((t), (4.6)

where qr is a reference point and H(qr) is a sparse (usually block-diagonal)
approximation to Uqq(qr). These equations are solved over a relatively large
stepsize, for instance, by using standard normal-mode techniques: by diag-
onalizing the matrix M~l^2H(qr)M~1^2, the system (4.6) is rewritten as a
set of decoupled equations

where q = TMl/2(qf - qr), v = TMll2vf, D =
is diagonal, and 6(t) = TM - 1 / 2 (£( t ) — VU{qr))\ these equations can then
be solved analytically (Zhang and Schlick 1994). Nevertheless, it has been
observed recently in Barth, Mandziuk and Schlick (1997) and Schlick et al.
(1997) that the direct numerical integration of (4.6) can in fact be much
faster than computing the normal modes, for instance, by application of
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the second-order Lobatto IIIA-IIIB PRK method with small inner step-
sizes. The above procedure, consisting of computing the fast components,
turns out to be a very competitive method in itself, and constitutes the
Langevin/'normal (LN) method. In LIN there is an additional correction
step for the slowly varying anharmonic part of the solution

q's = va, Mv's = -VU(qf + qs) + VU(qr) + H{qr)(qf ~ 9r) - lMvs.

This system is integrated by the implicit Euler method with one large step-
size h or, equivalently, by minimizing a dynamics function similar to (4.3).

4-5. Multiple time-stepping methods in MD

Since the forces in MD can be decomposed as a sum of hard short-range
interactions and soft long-range interactions on a different time-scale, it is
natural to consider the application of multiple time-stepping (MTS) meth-
ods. The idea is to reduce the overall computational work by evaluating
the soft forces less often than the hard forces (Streett, Tildesley and Saville
1978). In (4.1) the potential U(q) is decomposed into hard and soft parts

The bonded interactions (4.4) enter into the hard part. Moreover, an ar-
tificial partitioning of a long-range interaction into one hard and one soft
part has been proposed in Skeel and Biesiadecki (1994), for example, an
electrostatic interaction V(r) = C/r can be decomposed as

r ) / ut if r < rcut'
{> \C/r if r > r c u t ,

and Fhard(r) = V(r) - Vsoit(r) where rcut is a cut-off distance. MTS meth-
ods do not generally preserve the symplectic and reversible character of the
flow of (4.1). However, the Verlet-I algorithm (Grubmiiller, Heller, Win-
demuth and Schulten 1991, Biesiadecki and Skeel 1993) or, equivalently,
the r-RESPA method (Tuckerman, Berne and Martyna 1992), is an MTS
method retaining these properties. One macrostep H of this method can
be seen as a composition method: the Verlet algorithm is first applied with
stepsize H/2 to

q' = 0, Mv' = -VUsoh(q); (4.7)

then it is applied iV times with a microstep h = H/N to

q' = v, Mv' = -Wh a r d ( t f ) ;

finally it is again applied with stepsize H/2 to (4.7). Basically, the soft
forces are evaluated every macrostep H while the hard forces are evaluated
every microstep h = H/N. It must be mentioned that resonance and other
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problems have been reported (Grubmiiller et al. 1991, Biesiadecki and Skeel
1993).

5. Circuit simulation

5.1. Introduction

There are a number of applications where the solution has the property that
the fast solution is composed of an oscillation with a single high frequency.
In this section we will explore some problems from circuit simulation, and
a class of methods based on envelope-following ideas, which exploit this
property. These methods are often able to take stepsizes that are much
larger than the period of the oscillation. The problem of transient simulation
in this case is very closely related to the problem of finding a periodic steady
state; we will also discuss how similar ideas have been employed in numerical
methods for this problem.

Circuit simulation programs like SPICE (Nagel 1975) often need to employ
hundreds of thousands of time-steps to simulate the transient behaviour
of clocked analog circuits like switching power converters and phase-locked
loops. This is because in circuit simulation the stepsizes must be chosen (for
accuracy) to be much smaller than a clock period, but the time interval of
interest to a designer can be thousands of clock periods. Circuit designers are
typically not interested in the details of the node voltage behaviour in every
clock cycle, but instead are interested in the envelope of that behaviour.
With that in mind, the quasi-envelope is denned to be a continuous function
derived by the following process. Starting at the initial value or at some
other point on the solution, define a discrete sequence of points by sampling
the state of the system after every clock period T (see Fig. 7). The quasi-
envelope is derived by interpolating that sequence to form a smooth curve.
We note that the quasi-envelope is different from the more standard notion
of envelope because the quasi-envelope is not unique but instead depends
on the initial time used to generate the sequence.

Envelope-following methods are based on the idea that if the sequence of
points formed by sampling the state at the beginning of each cycle changes
slowly as a function of the cycle number, then the quasi-envelope will vary
relatively slowly and we will be able to approximate it using stepsizes which
are large relative to the length of a cycle.

Envelope-following methods are closely related to the stroboscopic method
proposed in 1951 by Minorsky (1974) for the study of differential equations.
Numerical methods using the envelope-following idea were first introduced
by astronomers in 1957 for calculating the orbits of artificial satellites (Mace
and Thomas 1960, Taratynova 1960) and were called multirevolution meth-
ods. Unlike circuit designers, who are interested in the envelope of the
oscillations but not in the details, the astronomers were concerned with com-
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quasi-envelope z(t)

to to+T

Fig. 7. ODE solution and quasi-envelope

puting future orbits accurately. The multirevolution methods developed in
Mace and Thomas (1960), Taratynova (1960) and Graff and Bettis (1975)
were generalizations of explicit multistep and Runge-Kutta methods for
ODEs to approximately solve the difference equation which generates the
sequence of points defining the quasi-envelope. Thus they would always take
stepsizes which are multiples of the period of the oscillation. Rather than
using an arbitrary starting point to define the quasi-envelope, as above,
they used a physical reference point (for example, node, apogee, or peri-
gee). Petzold (1981) extended these methods to more general systems by
denning the smooth quasi-envelope as above (independent of any physical
reference points), by providing a separate algorithm for finding the period
of the oscillation in the fast solution, and by showing how to handle the
case of a slowing changing period of the oscillation. Convergence results
for envelope-following numerical methods were also given in Petzold (1981).
Gear and Gallivan (Gallivan 1980, Gallivan 1983, Gear 1984) explored the
design of general ODE codes which incorporate multirevolution techniques
and attempt to detect the onset of oscillations. Kirchgraber (1982, 1983)
proposed a novel class of methods which synthesize ideas from the method
of averaging with envelope-following techniques. White et al. (White and
Leeb 1991, Kundert, White and Sangiovanni-Vincentelli 19886, Kundert,
White and Sangiovanni-Vincentelli 1988 a, Telichevesky, Kundert and White
1995, Telichevesky, Kundert and White 1996) applied envelope-following
methods to circuit simulation, developing implicit methods which are quite
efficient for this application and for finding the periodic steady state.
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5.2. Envelope-following methods

Given the initial value problem

y' = f(y,t), 2/(0) = yo, o<t<L, (5.1)

where y(t) is periodic or nearly periodic with period T, the quasi-envelope
z(t) is defined more precisely by

z(t + T) = z(t)+Tg(z(t),t), 0<t<L-T, (5.2)

where

and

—y(t + s,t) = f(y(t + s, t), t + s), y(t, t) = z.

It is easy to see that if z(0) = y(0) then z{KT) = y(KT), 0 < KT < L, so
that z agrees with y at multiples of the period. Since y is nearly periodic,
the values of z at points {KT}, K an integer, should change slowly. Solving
(5.2) exactly amounts to solving the differential equation (5.1) over the entire
interval [0, L], because g(z,t) is determined by integrating the differential
equation over one period of the oscillation. The basis of envelope-following
methods is to compute an approximation to z, that is, to solve the difference
equation (5.2) approximately with stepsizes H much larger than T. For
some applications, like circuit simulation, it is possible to define a smooth z
over the entire interval [0, L]. For other applications like orbit calculations,
it is best to consider z as a discrete function and to take stepsizes in the
approximation method which are multiples of T. We note that the solution
to the differential equation can be recovered at any time from the (discrete)
quasi-envelope, by solving the original ODE with initial condition on the
quasi-envelope for no more than one cycle.

Envelope-following methods that are generalizations of linear multistep
methods or Runge-Kutta methods have been derived (Gallivan 1983, Graff
and Bettis 1975, Petzold 1981, Taratynova 1960). For example, the 'trapez-
oidal' envelope-following method is given by

(H-T\ , , (H + T\
I 7> g{Zn+l,tn+l) + ^ ) g{Zn,tr,
\ * J \ *• /

We note that the coefficients of these methods reduce to those of standard
ODE methods as T —> 0, and that the methods are 'exact' (up to errors
in solving the original ODE numerically over each individual cycle) when
T = H. For efficiency, the objective is to be able to take H ^> T.

In some applications, the period (cycle length) of the oscillation might
also be slowly varying. This is handled in envelope-following methods by
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means of a change of independent variable t so that in the new variable i
the period r of the oscillation is a constant, that is,

t{i + r) - t(i) = T(t(i)), t(0) = 0.

Defining y(i) := y(t(i)) and z(i) := z(t(i)), the difference equations that
define the quasi-envelope in the case of a slowly varying period of the oscil-
lation are given by

z(i + r) = z(i) + Tg(z(i),t). z(0) = z(0),

t(i + r) = t^ + rt7^-), t(0)=0,

where

The accuracy and stability of these formulas have been analysed by Petzold
(1981).

5.3. Finding the period

In some applications, such as circuit simulation, the period of the oscillation
is known a priori. In other applications, and in finding a periodic steady
state, finding the period of the high-frequency oscillation is an important
part of the method.

Several algorithms have been proposed for finding the period. Noting that
if y were periodic, \\y(t) — y(t + T)\\ = 0, Petzold (1981) proposed finding
the period T by miminizing \\y(t) — y(t + T)\\ over one approximate period.
More precisely, Tm+\ is defined as the value of T* that satisfies

min
0<e<T*<

In practice, in order to better model problems whose solutions are given by
a fast oscillation superimposed on a slowly varying solution, the period is
found by solving

fTm 2
n i i n / (y Pm+i ( 2 / 1 ^ > J-m+i) Pm+i\t i lm+i))) d r ,

where pm+\ is a polynomial which approximates the slow solution that is
found at each iteration for Tm+i via another minimization. It is shown
in Petzold (1978) that this algorithm converges, given a sufficiently smooth
initial guess. A similar approach has been used in finding the periodic steady
state, as we will discuss below.
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The above method of comparing the solution over two periods to find
the period of the oscillation is quite general; however, it suffers from the
drawback that it is somewhat inefficient. In particular, each time the period
needs to be found, the original problem must be solved over two cycles,
whereas the envelope-following formulas require the solution over only one
cycle. For problems with a slowly varying period (where the period needs
to be recomputed often) this is a relatively large expense. To remedy this
problem, another algorithm was proposed by Gallivan and Gear (Gallivan
1980, Gallivan 1983, Gear 1984). This algorithm is based on the idea of
defining the period by identifying certain points on the solution at which
a simple characterization is repeated, such as zero crossing. Astronomers
did this for the multirevolution methods by identifying points of physical
interest, such as node, apogee or perigee. For a general problem, the solution
itself may have no zero crossing, and there may be difficulty in choosing
any value which is crossed periodically. However, the derivative will have
periodic sign changes, so the method examines the zero crossings of cTy',
where c is a vector of constant weights. Since there may be more than one
zero crossing in a single period, ||y'(£i) — 2/(^2) || is also examined, where t\
and £2 are the times of zero crossings. If the norm is small, the possibility
of a period is considered. For some problems, the solution may not start
out oscillatory. This type of algorithm can be used to detect the onset of
oscillations, by monitoring the sequence of periods T which are computed.
In the event that highly oscillatory behaviour is detected, the software can
switch to envelope-following methods.

5.4- Stiffness and implicit methods

As we have noted, the objectives of circuit designers for simulation differ
from those of astronomers because circuit designers are not usually inter-
ested in the fine details of the oscillation. There are also significant differ-
ences in the properties of the ODE systems which influence the choice of
numerical methods. In particular, circuit simulation problems are usually
quite stiff. Thus they require the use of implicit versions of the envelope-
following methods.

White et al. (White and Leeb 1991, Kundert et al. 19886, Kundert et al.
1988a, Telichevesky et al. 1995, Telichevesky et al. 1996) have developed ef-
ficient implicit algorithms based on the envelope-following idea, and applied
them to circuit simulation. The simplest implicit envelope-following method
is based on the implicit Euler method and is given by

Zn+i = zn + Hg(zn+i,tn+i). (5.3)

Solving the nonlinear system (5.3) for zn+\, which is accomplished in stiff
ODE codes by a modified Newton iteration, requires an approximate Jac-
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obian matrix dg/dz. Gallivan (1983) has considered the implementation of
implicit envelope-following methods and suggests computing the Jacobian
by finite difference approximation. This can work well for small problems,
but for large systems it is prohibitively expensive because each evaluation
of g requires solving the original problem over one cycle.

A more efficient and accurate approach (White and Leeb 1991) is to view
this computation as finding the sensitivities of g with respect to perturba-
tions in z. The sensitivity problem is solved concurrently with the original
system over one cycle. This can be implemented very efficiently by noting
that the Jacobian matrix at every time-step for the sensitivities with respect
to each parameter is the same as the Jacobian matrix of the original sys-
tem. Hence this matrix, if it is dense, can be formed and decomposed once,
then used in the Newton iteration for each sensitivity. Differencing in this
way is also more accurate than directly differencing the numerical solution
over each cycle, because the original system and the sensitivity equations
use the same sequence of stepsizes and orders (Hairer, N0rsett and Wanner
1993). White and Leeb (1991) have further noted that if the implicit Euler
envelope-following method is used unmodified, the stepsize H will be con-
strained by the component of y with the fastest-changing envelope. This can
be unnecessarily conservative; components of y which have rapidly changing
envelopes in stiff problems are likely to be 'nearly algebraic' functions of
other, more slowly changing components, over the timescale of one period.
These nearly algebraic components of y are computed in White and Leeb
(1991) directly from the other components via a DC (steady-state) analysis,
and hence are not computed by the envelope-following method. A compon-
ent yi of y is considered quasi-algebraic if the zth column of the sensitivity
matrix is nearly zero.

For large-scale systems, approximating the Jacobian matrix directly is
too expensive, because there are so many sensitivities to be computed. Te-
lichevesky et al. (1996) have applied preconditioned iterative methods to
solve the linear system at each Newton iteration. These Krylov subspace
methods have the property that the Jacobian is never needed directly. In-
stead, the iterative method needs the product of the Jacobian matrix times
a given vector. This can be approximated by a directional difference (a sens-
itivity in the direction of the given vector). Further efficiency is attained by
exploiting the structure of the system in a 'recycled' version of the Krylov
algorithm. Telichevesky et al. (1996) found that this method can be as much
as forty times faster than direct factorization, for large circuits.

Finally, we note that the solution of stiff oscillatory systems by implicit
envelope-following methods has much in common with finding the periodic
steady state. That problem can be described as finding y and T such that

y(T)-y(0) = 0,
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which can also be written as

g(z(0),T) = 0.

Aprille Jr. and Trick (1972) proposed a Newton-type algorithm for solv-
ing the steady-state problem in circuit analysis. Telichevesky et al. (1995)
have efficiently performed steady-state analysis for large-scale circuits mak-
ing use of the Krylov subspace approach described above. Lust, Roose,
Spence and Champneys (1997) have proposed an algorithm for computing
periodic steady states of general ODE systems which combines the recurs-
ive projection method of Shroff and Keller (1993), which separates the slow
from the fast components, with a Krylov method.
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