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Summary. We present a new second order extension of the generalized–α method
of Chung and Hulbert for systems in mechanics having nonconstant mass ma-
trix, holonomic constraints, and/or nonholonomic constraints. Such systems are fre-
quently encountered in multibody dynamics. For variable step–sizes, a new adjusting
formula preserving the second order of the method is proposed.

1 Introduction

The generalized–α method of Chung and Hulbert [2] was originally developed
for second order systems of differential equations in structural dynamics of
the form My′′ = f(t, y, y′). In mechanics M ∈ R

n×n is a constant mass
matrix, y ∈ R

n is a vector of generalized coordinates, y′ ∈ R
n is a vector of

generalized velocities, y′′ ∈ R
n is a vector of generalized accelerations, and

f(t, y, y′) ∈ R
n represents forces. Introducing the new variables z := y′ ∈ R

n

and a := z′ = y′′ ∈ R
n, these equations are equivalent to the semi–explicit

system of differential–algebraic equations (DAEs)

y′ = z , z′ = a , 0 = Ma− f(t, y, z) . (1)

Assuming the mass matrix M to be nonsingular, this system of DAEs is of
index 1 since one can obtain explicitly a = M−1f(t, y, z). The generalized–
α method of Chung and Hulbert [2] for My′′ = f(t, y, y′) or equivalently
for (1) is a non-standard implicit one-step method. One step of this method
(t0, y0, z0, aα) 7→ (t1 = t0 + h, y1, z1, a1+α) with step–size h can be expressed
as follows

∗ This material is based upon work supported by the National Science Foundation
under Grant No. 0654044.
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y1 =y0 + hz0 +
h2

2
((1 − 2β)aα + 2βa1+α) , (2a)

z1 =z0 + h ((1 − γ)aα + γa1+α) , (2b)

(1 − αm)Ma1+α + αmMaα=(1 − αf )f(t1, y1, z1) + αff(t0, y0, z0) , (2c)

see Section 2 for a justification of the notation aα, a1+α. The generalized–α
method has free coefficients αm 6= 1, αf , β, γ. For specific choices of these
coefficients we obtain well-known methods:

• Newmark’s family: αm = 0, αf = 0;
– The trapezoidal rule: β = 1/4, γ = 1/2;
– Störmer’s rule: β = 0, γ = 1/2;

• The Hilber-Hughes-Taylor α (HHT-α) method [3, 4]:

αm = 0 , α := −αf ∈

[
−

1

3
, 0

]
, β =

(1 − α)2

4
, γ =

1

2
− α .

The coefficients αm 6= 1, αf , β, γ of the generalized–α method (2) are usually
chosen according to

αm =
2ρ∞ − 1

1 + ρ∞
, αf =

ρ∞
1 + ρ∞

, β =
(1 − α)2

4
, γ =

1

2
− α

where α := αm − αf and ρ∞ ∈ [0, 1] is a parameter controlling numerical
dissipation (ρ∞ = 0 for maximal dissipation [2]).

In this paper we present extensions of the generalized–α method (2) for
systems having

• Nonconstant mass matrix M(t, y), see Section 3;
• Holonomic constraints g(t, y) = 0, see Section 4;
• Nonholonomic constraints k(t, y, y′) = 0, see Section 5.

Such systems are frequently encountered in multibody dynamics [10]. A gen-
eral extension and a convergence result is given in Section 6. For variable
step–sizes, a new adjusting formula preserving the second order of the method
is proposed in Section 7. Some numerical experiments are given in Section 8.
A short conclusion is finally given in Section 9.

2 About the Notation aα, a1+α

We use the notation aα and a1+α instead of a0 and a1 to emphasize the
fact that these quantities should not be considered as approximations to the
acceleration vector a(t) at t0 and t1 respectively, but at tα := t0 + αh and
t1+α := t1 +αh = t0 +(1+α)h respectively where α := αm−αf . The reason is
that for a solution (y(t), z(t), a(t)) and values (y0, z0) satisfying y0 − y(t0) =
O(h2), z0 − z(t0) = O(h2), we have
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a1+α − a(t1+α) = O(h2) when aα − a(tα) = O(h2) , (3)

whereas we only have a1+α − a(t1) = O(h) for α 6= 0 and when aα − a(t0) =
O(h2) or aα − a(tα) = O(h2). This can be seen as follows. We rewrite (2c) as

(1−αm)a1+α+αmaα = (1−αf )M
−1f(t1, y1, z1)+αfM

−1f(t0, y0, z0) . (4)

Since a(t) = M−1f(t, y(t), z(t)), y1 − y(t1) = O(h2), and z1 − z(t1) = O(h2)
we have

M−1f(t1, y1, z1) = a(t0)+ha
′(t0)+O(h2) , M−1f(t0, y0, z0) = a(t0)+O(h2) .

Hence, for the right-hand side of (4) we obtain

(1 − αf )M
−1f(t1, y1, z1) + αfM

−1f(t0, y0, z0)

= a(t0) + h(1 − αf )a
′(t0) +O(h2) . (5)

Since

a(t1+α) = a(t0)+h(1+α)a′(t0)+O(h2) , a(tα) = a(t0)+hαa′(t0)+O(h2) ,

we have

(1 − αm)a(t1+α) + αma(tα) = a(t0) + h(1 − αm + α)a′(t0) +O(h2) . (6)

Thus, from (4–6), we obtain

(1 − αm)(a1+α − a(t1+α)) + αm(aα − a(tα))

= h(−αf + αm − α)a′(t0) +O(h2) . (7)

Hence, (3) is satisfied for α = αm − αf .

Choosing the Initial Value of aα for the First Integration Step

Here we give two possible choices for the initial value of aα to be used for the
first integration step. For αm = 0, for example for the HHT-α method, we
see from (7) that taking aα := a0 where Ma0 = f(t0, y0, z0) still leads to the
estimate a1+α − a(t1+α) = O(h2). For αm 6= 0 it is better to define aα such
that aα − a(tα) = O(h2), for example implicitly by

Maα = (1 − α)f(t0, y0, z0) + αf(t1, y1, z1) (8)

as proposed by Lunk and Simeon [7]. Nevertheless, taking aα := a0 in fact
does not affect the order of global convergence of the y and z components, see
Theorem 1 in Section 6.
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3 Nonconstant Mass Matrix M(t, y)

We consider M(t, y)y′′ = f(t, y, y′) where M(t, y) is a nonconstant mass ma-
trix assumed to be nonsingular. These equations are equivalent to the semi–
explicit system of index 1 DAEs

y′ = z , z′ = a , 0 = M(t, y)a− f(t, y, z) .

A natural extension of the generalized–α method of (2) is to replace (2c) with

(1 − αm)M1+αa1+α + αmMαaα = (1 − αf )f(t1, y1, z1) + αff(t0, y0, z0)

where
M1+α ≈M(t1+α, y(t1+α)) , Mα ≈M(tα, y(tα)) .

For example we can take explicitly

M1+α := M(t1+α, y0 +h(1+α)z0) , Mα := M(1+α)−1 or M(tα, y0 +hαz0)

where M(1+α)−1 denotes the matrix M1+α used at the previous time–step.
Second order of convergence is a consequence of Theorem 1 in Section 6.

4 Holonomic Constraints g(t, y) = 0

We extend now the generalized–α method to systems having holonomic con-
straints g(t, y) = 0. More precisely we consider

M(t, y)y′′ = f(t, y, y′, λ) , 0 = g(t, y) .

Using the notation gy(t, y) := ∂g
∂y

(t, y), usually f(t, y, y′, λ) = f0(t, y, y
′) −

gTy (t, y)λ and the term −gTy (t, y)λ containing algebraic variables λ represents
reaction forces due to the holonomic constraints g(t, y) = 0. Differentiating
0 = g(t, y) once with respect to t we obtain

0 = (g(t, y))′ = gt(t, y) + gy(t, y)y
′ .

Hence, we consider overdetermined systems of index 2 differential–algebraic
equations (ODAEs) of the form

y′ = z , z′ = a , 0 = M(t, y)a− f(t, y, z, λ) ,

0 = g(t, y) , 0 = gt(t, y) + gy(t, y)z

where we assume the matrix
(
M(t, y) −fλ(t, y, z, λ)
gy(t, y) O

)
is nonsingular .
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When f(t, y, z, λ) = f0(t, y, z) − gTy (t, y)λ, this matrix becomes
(
M(t, y) gTy (t, y)
gy(t, y) O

)

and it is symmetric when M(t, y) is symmetric. At t0 we consider consistent
initial conditions (y0, z0, a0, λ0), i.e.,

0=M(t0, y0)a0 − f(t0, y0, z0, λ0) ,

0=g(t0, y0) ,

0=gt(t0, y0) + gy(t0, y0)z0 ,

0=gtt(t0, y0) + 2gty(t0, y0)z0 + gyy(t0, y0)(z0, z0) + gy(t0, y0)a0 .

Several extensions of the HHT-α method have been proposed. Cardona and
Géradin [1] analyze a direct extension of the HHT-α method to linear index
3 DAEs. They show that a direct application of the HHT-α method is incon-
sistent and suffers from instabilities. Yen, Petzold, and Raha [11] propose a
first order extension of the HHT-α method based on projecting the solution of
the underlying ODEs onto the constraints (including the index 1 acceleration
level constraints) after each step. More recently, second order extensions of
the HHT-α method and generalized–α method have been proposed indepen-
dently by Jay and Negrut [5] and by Lunk and Simeon [7] assuming additivity
of f(t, y, z, λ) = f0(t, y, z) + f1(t, y, λ). Here, we propose a different extension
of the generalized–α method without making this assumption:

y1 =y0 + hz0 +
h2

2
((1 − 2β)aα + 2βã1+α) ,(9a)

z1 =z0 + h ((1 − γ)aα + γa1+α) , (9b)

(1 − αm)M1+αã1+α + αmMαaα=(1 − αf )f(t1, y1, z1, λ̃1)

+ αff(t0, y0, z0, λ0) , (9c)

(1 − αm)M1+αa1+α + αmMαaα=(1 − αf )f(t1, y1, z1, λ1)

+ αff(t0, y0, z0, λ0) , (9d)

0=g(t1, y1) , (9e)

0=gt(t1, y1) + gy(t1, y1)z1 . (9f)

When f(t, y, z, λ) = f0(t, y, z) − gTy (t, y)λ we can replace (9c) by

(1 − αm)M1+α(ã1+α − a1+α) = (1 − αf )g
T
y (t1, y1)(λ1 − λ̃1) .

Second order of convergence is a consequence of Theorem 1 in Section 6.

5 Nonholonomic Constraints k(t, y, y′) = 0

We extend now the generalized–α method to systems having nonholonomic
constraints k(t, y, y′) = 0. More precisely we consider
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M(t, y)y′′ = f(t, y, y′, ψ) , 0 = k(t, y, y′) .

Usually f(t, y, y′, ψ) = f0(t, y, y
′) − kTy′(t, y, y

′)ψ and the term −kTy′(t, y, y
′)ψ

containing algebraic variables ψ represents reaction forces due to the nonholo-
nomic constraints k(t, y, y′) = 0. Hence, we consider systems of index 2 DAEs
of the form

y′ = z , z′ = a , 0 = M(t, y)a− f(t, y, z, ψ) , 0 = k(t, y, z) ,

and we assume the matrix
(

M(t, y) −fψ(t, y, z, ψ)
kz(t, y, z) O

)
is nonsingular .

When f(t, y, z, ψ) = f0(t, y, z)− kTz (t, y, z)ψ, this matrix becomes

(
M(t, y) kTz (t, y, z)
kz(t, y, z) O

)

and it is symmetric when M(t, y) is symmetric. At t0 we consider consistent
initial conditions (y0, z0, a0, ψ0), i.e.,

0=M(t0, y0)a0 − f(t0, y0, z0, ψ0) ,

0=k(t0, y0, z0) ,

0=kt(t0, y0, z0) + ky(t0, y0, z0)z0 + kz(t0, y0, z0)a0 .

We propose the following extension of the generalized–α method

y1 =y0 + hz0 +
h2

2
((1 − 2β)aα + 2βa1+α) ,(10a)

z1 =z0 + h ((1 − γ)aα + γa1+α) , (10b)

(1 − αm)M1+αa1+α + αmMαaα=(1 − αf )f(t1, y1, z1, ψ1)

+ αff(t0, y0, z0, ψ0) , (10c)

0=k(t1, y1, z1) . (10d)

Second order of convergence is a consequence of Theorem 1 in Section 6.

6 General Extension and Convergence

We extend now the generalized–α method to systems having a nonconstant
mass matrix M(t, y), holonomic constraints g(t, y) = 0, and nonholonomic
constraints k(t, y, y′) = 0. The algebraic variables λ are associated with the
holonomic constraints g(t, y) = 0 and gt(t, y) + gy(t, y)y

′ = 0 which results
from differentiating g(t, y) = 0 with respect to t. The algebraic variables ψ
are associated with the nonholonomic constraints k(t, y, y′) = 0. Hence, we
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consider overdetermined systems of index 2 differential–algebraic equations
(ODAEs) of the form

y′ =z , (11a)

M(t, y)z′ =f(t, y, z, λ, ψ) , (11b)

0=g(t, y) , (11c)

0=gt(t, y) + gy(t, y)z , (11d)

0=k(t, y, z) , (11e)

and we assume the matrix



M(t, y) −fλ(t, y, z, λ, ψ) −fψ(t, y, z, λ, ψ)
gy(t, y) O O
kz(t, y, z) O O


 is nonsingular . (12)

When f(t, y, z, λ, ψ) = f0(t, y, z)−g
T
y (t, y)λ−kTz (t, y, z)ψ, this matrix becomes




M(t, y) gTy (t, y) kTz (t, y, z)
gy(t, y) O O
kz(t, y, z) O O





and it is symmetric when M(t, y) is symmetric. At t0 we consider consistent
initial conditions (y0, z0, a0, λ0, ψ0), i.e.,

0=M(t0, y0)a0 − f(t0, y0, z0, λ0, ψ0) ,

0=g(t0, y0) ,

0=gt(t0, y0) + gy(t0, y0)z0 ,

0=k(t0, y0, z0) ,

0=gtt(t0, y0) + 2gty(t0, y0)z0 + gyy(t0, y0)(z0, z0) + gy(t0, y0)a0 ,

0=kt(t0, y0, z0) + ky(t0, y0, z0)z0 + kz(t0, y0, z0)a0 .

We propose an extension of the generalized–α method which does not use
any additive structure of f(t, y, z, λ, ψ). We call it the generalized–α–SOI2
method (SOI2 stands for Stabilized Overdetermined Index 2). One step
(t0, y0, z0, aα, λ0, ψ0) 7→ (t1, y1, z1, a1+α, λ1, ψ1) with step–size h of the genera-
lized–α–SOI2 method for (11) can be expressed as follows
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y1 =y0 + hz0 +
h2

2
((1 − 2β)aα + 2βã1+α) ,(13a)

z̃1 =z0 + h ((1 − γ)aα + γã1+α) , (13b)

z1 =z0 + h ((1 − γ)aα + γa1+α) , (13c)

(1 − αm)M1+αã1+α + αmMαaα=(1 − αf )f(t1, y1, z1, λ̃1, ψ̃1)

+ αff(t0, y0, z0, λ0, ψ0) , (13d)

(1 − αm)M1+αa1+α + αmMαaα=(1 − αf )f(t1, y1, z1, λ1, ψ1)

+ αff(t0, y0, z0, λ0, ψ0) , (13e)

0=g(t1, y1) , (13f)

0=gt(t1, y1) + gy(t1, y1)z1 , (13g)

0=k(t1, y1, z̃1) , (13h)

0=k(t1, y1, z1) (13i)

where M1+α := M(t1+α, y0 +h(1+α)z0) and Mα := M(1+α)−1 or M(tα, y0 +

hαz0). The auxiliary variables z̃1, ã1+α, λ̃1, ψ̃1 are just local to the current step,

they are not propagated. The possibility to replace ψ̃1 by ψ1 in (13d) and to

suppress the equations (13b)-(13h) and the auxiliary variables z̃1, ψ̃1 remains
to be investigated. When f(t, y, z, λ, ψ) = f0(t, y, z)− gTy (t, y)λ− kTz (t, y, z)ψ
we can replace (13d) by

(1 − αm)M1+α(ã1+α − a1+α) = (1 − αf )g
T
y (t1, y1)(λ1 − λ̃1)

+ (1 − αf )k
T
z (t1, y1, z1)(ψ1 − ψ̃1) .

Convergence analysis of the generalized–α–SOI2 method is not straightfor-
ward. We have the following convergence result:

Theorem 1. Consider the overdetermined system of DAEs (11) under the
assumption (12) with consistent initial conditions (y0, z0, a0, λ0, ψ0) at t0 and
exact solution (y(t), z(t), a(t), λ(t), ψ(t)). Suppose that aα − a(t0 + αh) =
O(h) (e.g., aα := a0), αm 6= 1, αf 6= 1, β 6= 0, γ 6= 0, and r < 1 where
r := |αm/(1 − αm)|. Then the generalized–α–SOI2 numerical approximation
(yn, zn, an+α, λn, ψn), see (13), satisfies for 0 ≤ h ≤ hmax and tn− t0 = nh ≤
Const, the following global error estimates

yn − y(tn) = O(h2) , zn − z(tn) = O(h2) ,

an+α − a(tn + αh) = O(h2 + rnδ0) ,

λn − λ(tn) = O(h2 + rnδ0) , ψn − ψ(tn) = O(h2 + rnδ0)

where δ0 := ‖aα − a(t0 + α)‖ = O(h). If αm = 0 or aα − a(t0 + αh) = O(h2)
we have

an+α − a(tn + αh) = O(h2) , λn − λ(tn) = O(h2) , ψn − ψ(tn) = O(h2) .
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Theorem 1 remains valid for variable step–sizes, see Section 7. A proof of this
theorem will be given in a forthcoming paper [6]. It is long and technical and
is thus omitted here.

7 Adjustments for Variable Step–Sizes hn

When applying the generalized–α method with variable step–sizes, the val-
ues an+α and Mn+αan+α must be adjusted before each new step in order
to preserve the second order of the method for all components. Consider a
previous step starting at tn−1 with step–size hn−1 and a new step starting at
tn = tn−1+hn−1 with step–size hn. The value an−1+α used in the previous step
is an approximation of a(t) at tn−1 + αhn−1 i.e., an−1+α ≈ a(tn−1 + αhn−1).
The value an+α obtained in the previous step is an approximation of a(t) at
tn−1 + (1 +α)hn−1 = tn + αhn−1 i.e., an+α ≈ a(tn +αhn−1). For the current
time–step starting at tn with step–size hn we need the value an+α to be an
approximation of a(t) at tn+αhn, i.e., an+α ≈ a(tn+αhn). By linearly inter-
polating an−1+α at tn−1+αhn−1 and an+α at tn+αhn−1 and by extrapolating
at tn + αhn, an+α can be replaced by

an+α := an+α + α

(
hn
hn−1

− 1

)
(an+α − an−1+α) . (14a)

Analogously we can replace Mn+αan+α by

Mn+αan+α := Mn+αan+α

+ α

(
hn
hn−1

− 1

)
(Mn+αan+α −Mn−1+αan−1+α) . (14b)

These adjusting formulas (14) have several advantages:

• They are simple to implement;
• Their computational cost is almost negligible;
• They are valid for ODEs and DAEs;
• They preserve second order of convergence.

These modifications are not necessary to preserve the second order of con-
vergence for the y and z components. However, they are recommended since
their computational cost is almost negligible and they allow second order of
convergence for the components a, λ, and ψ.

8 Numerical Experiments

8.1 A Nonlinear Mathematical Test Problem

To illustrate Theorem 1 numerically we first consider the following nonlinear
mathematical test problem
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(
y′1
y′2

)
=

(
z1
z2

)
, (15a)

(
y1 y2 − e−2t

sin(y1 − et) y1y2

) (
z′1
z′2

)
=

(
et(y1z2 + 2y2z1) + e2ty1λ1 − y1z2ψ1 − 2

e−t(0.5y2z2 − 2y1z1y2z2 + y2λ
2
1) − y1y2z1ψ

3
1 + e3t

)
, (15b)

0 = g(t, y) = y2
1y2 − 1 , (15c)

0 = gt(t, y) + gy(t, y)z = 2y1y2z1 + y2
1z2 , (15d)

0 = k(t, y, z) = y1z1z2 + 2 . (15e)

Observe that this problem is nonlinear in the algebraic variables λ1 and ψ1.
The following initial conditions at t0 = 0 have been used: y1(0) = 1, y2(0) = 1,
z1(0) = 1, z2(0) = −2, λ1(0) = 1, ψ1(0) = 1. The exact solution is given
explicitly as follows: y1(t) = et, y2(t) = e−2t, z1(t) = et, z2(t) = −2e−2t,
λ1(t) = e−t, ψ1(t) = et. We have applied the generalized–α–SOI2 method, see
(13), with damping parameter ρ∞ = 0.2 and variable step–sizes alternating
between h/3 and 2h/3 for various values of h. Using the adjusting formulas
(14) for an+α and Mn+αan+α we observe global convergence of order 2 at
tn = 1 in Fig. 1. Without these modifications a reduction of the order of
convergence to 1 for the components a, λ, and ψ can be observed in Fig. 2.

8.2 A Pendulum Model

As a second numerical experiment we consider the pendulum model in Fig. 3
where we denote y1 := x, y2 := y, y3 := θ. The constrained equations of motion
associated with this model are



y′1
y′2
y′3


 =



z1
z2
z3


 , (16a)




m 0 0
0 m 0

0 0 mL2

3








z′1
z′2
z′3



 =




0

−mg
−cz3 − k ·

(
y3 −

3π
2

)





−




1 0
0 1

L sin(y3) −L cos(y3)




(
λ1

λ2

)
, (16b)

(
0
0

)
= g(t, y) =

(
y1 − L cos(y3)
y2 − L sin(y3)

)
, (16c)

(
0
0

)
= gt(t, y) + gy(t, y)z =

(
z1 + L sin(y3)z3
z2 − L cos(y3)z3

)
. (16d)

The pendulum is started from consistent initial conditions corresponding to
y3(0) = 3π/2, z3(0) = 10. The parameters used are given in the caption



The Generalized–α Method for Constrained Systems in Mechanics 11

10
−5

10
−4

10
−3

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

h

er
ro

rs
 in

 y
,z

,a
,la

m
bd

a,
 a

nd
 p

si

error of generalized−alpha−SOI2 with variable stepsizes

Fig. 1. Global errors ‖yn−y(tn)‖2 (�), ‖zn−z(tn)‖2 (◦), ‖an+α−a(tn +αh)‖2 (×),
‖λn −λ(tn)‖2 (+), ‖ψn −ψ(tn)‖2 (∗) of the generalized–α–SOI2 method (ρ∞ = 0.2)
at tn = 1 for the test problem (15) with variable step–sizes alternating between h/3
and 2h/3 using the adjusting formulas (14) for an+α and Mn+αan+α

of Fig. 3. We have applied the generalized–α–SOI2 method, see (13), with
damping parameter ρ∞ = 0.2 and variable step–sizes alternating between h/3
and 2h/3 for various values of h. Using the adjusting formula (14a) for an+α

we observe global convergence of order 2 at tn = 2 in Fig. 4.

8.3 αm = 0 and Holonomic Constraints: HHT–SOI2

As mentioned in Section 1 the generalized–α method for αm = 0 corresponds
to the HHT–α method. In this section we only consider the generalized–α–
SOI2 method for αm = 0 and systems for which

• The constraints are holonomic 0 = g(t, y);
• Forces are of the form f(t, y, z, λ) = f0(t, y, z) − gTy (t, y)λ.

Note that these two conditions are satisfied by a vast number of multibody
systems. In this situation, denoting α := −αf , δ̃ := ã1+α − a1+α, and µ̃ :=

(1 + α)(λ1 − λ̃1), the generalized–α–SOI2 method given in (9) becomes



12 Laurent O. Jay and Dan Negrut

10
−5

10
−4

10
−3

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

h

er
ro

rs
 in

 y
,z

,a
,la

m
bd

a,
 a

nd
 p

si

error of generalized−alpha−SOI2 with variable stepsizes

Fig. 2. Global errors ‖yn−y(tn)‖2 (�), ‖zn−z(tn)‖2 (◦), ‖an+α−a(tn +αh)‖2 (×),
‖λn −λ(tn)‖2 (+), ‖ψn −ψ(tn)‖2 (∗) of the generalized–α–SOI2 method (ρ∞ = 0.2)
at tn = 1 for the test problem (15) with variable step–sizes alternating between h/3
and 2h/3 without using the adjusting formulas (14) for an+α and Mn+αan+α

y1 =y0 + hz0 +
h2

2

(
(1 − 2β)aα + 2β(a1+α + δ̃)

)
, (17a)

z1 =z0 + h ((1 − γ)aα + γa1+α) , (17b)

M1+αδ̃=gTy (t1, y1)µ̃ , (17c)

M1+αa1+α=(1 + α)f(t1, y1, z1, λ1) − αf(t0, y0, z0, λ0) , (17d)

0=g(t1, y1) , (17e)

0=gt(t1, y1) + gy(t1, y1)z1 . (17f)

Numerical experiments have been carried out based on this method which is
called HHT-SOI2 hereafter. The method HHT-SOI2 is similar in form to the
HHT–I3 method proposed in [9] with the following differences:

• The velocity kinematic constraints (17f) has been added to provide con-
straint stabilization;

• The equation (17a) has an acceleration correction term δ̃;

• The additional equation (17c) relates the acceleration correction δ̃ to the
algebraic variables µ̃ associated with the velocity kinematic constraints
(17f).
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Fig. 3. A pendulum model. Parameters used (in SI units): massm = 5, length L = 2,
spring stiffness k = 3000, damping coefficient c = 100, gravitational acceleration
g = 9.81. Initial conditions used correspond to θ(0) = 3π/2, θ′(0) = 10

A rigid-body slider crank model shown in Fig. 5 is used here to illustrate
the velocity constraint stabilization. The equations of motion are formulated
using the floating frame of reference formulation [10]. A description of this
model along with initial conditions used in its analysis is provided in [8]. We
have monitored the velocity of the pin connecting the crank to the ground
(point O in Fig. 5) using a step–size h = 2−10 = 0.0009765625. Ideally, the
drift of the velocity constraints should be zero. When plotted in a phase plot
one against the other, for the HHT–I3 integrator a limit cycle of magnitude
approximately 10−6 can be observed in Fig. 6, while for the HHT–SOI2, as
expected, the plot of Fig. 7 displays a collection of random points that are
within machine precision.

9 Conclusions

The generalized–α method of Chung and Hulbert [2] is extended in this work
to handle the case of nonlinear differential–algebraic equations associated for
example with the time evolution of systems of rigid and/or flexible bodies.
The proposed method, called generalized–α–SOI2 method, where SOI2 stands
for Stabilized Overdetermined Index 2, is second order convergent for sys-
tems having nonconstant mass matrix, holonomic constraints, and/or non-
holonomic constraints. For variable step–sizes, a new adjusting formula pre-
serving the second order of the method is proposed. Numerical experiments
have been carried out to verify these claims. The new extension has the same
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Fig. 4. Global errors ‖yn − y(tn)‖2 (�), ‖zn − z(tn)‖2 (◦), ‖λn −λ(tn)‖2 (+) of the
generalized-α-SOI2 method (ρ∞ = 0.2) at tn = 2 for the pendulum test problem
(16) with variable step–size alternating between h/3 and 2h/3 using the adjusting
formula (14a) for an+α

user-adjustable numerical damping parameters associated with the original
generalized–α method. Due to its semi–implicit formulation, early numerical

Fig. 5. Slider crank mechanism
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Fig. 6. Velocity kinematic constraints
violation for HHT–I3

Fig. 7. Velocity kinematic constraints
satisfaction for HHT–SOI2

results suggest that the new method is more efficient for large mechanical sys-
tems simulation when compared to the current state of the art in numerical
integration of constrained systems in mechanics.
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