
NSF GRANT # 0700191
NSF PROGRAM NAME: CMMI

Simulation of Multibody Dynamics Leveraging New Numerical Methods
and Multiprocessor Capabilities

Dan Negrut
Simulation Based Engineering Lab, Department of MechanicalEngineering

University of Wisconsin, Madison, WI, 53706

Laurent Jay
Department of Mathematics

University of Iowa, Iowa-City, IA, 52242

Alessandro Tasora
Department of Industrial Engineering

University of Parma, V.G.Usberti 181/A, 43100, Parma, Italy

Mihai Anitescu
Mathematics and Computer Science Division

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Hammad Mazhar, Toby Heyn, Arman Pazouki
Simulation Based Engineering Lab, Department of MechanicalEngineering

University of Wisconsin, Madison, WI, 53706

Abstract This paper describes an approach for the dy-
namic simulation of computer-aided engineering models
where large collections of rigid bodies interacting through
millions of frictional contacts and bilateral mechanical
constraints. Thanks to the massive parallelism available
on modern GPUs, we are able to simulate sand, granu-
lar materials, and other complex physical scenarios with
one order of magnitude speedup when compared to a se-
quential CPU–based implementation of the discussed al-
gorithms.

1. Introduction, Problem Statement, and Context
The ability to efficiently and accurately simulate the
dynamics of rigid multibody systems is relevant in
computer-aided engineering design, virtual reality, video
games, and computer graphics. Devices composed of
rigid bodies interacting through frictional contacts and
mechanical joints pose numerical solution challenges be-
cause of the discontinuous nature of the motion. Con-
sequently, even relatively small systems composed of a
few hundred parts and constraints may require significant
computational effort. More complex scenarios such as ve-
hicles running on pebbles and sand as in Fig. 1 and Fig. 2,
soil and rock dynamics, and flow and packing of granular
materials are particularly challenging and prone to very

long simulation times. Results reported in [3] indicate
that the most popular rigid body software for engineer-
ing simulation, which uses an approach based on the so
called Discrete Element Method, runs into significant dif-
ficulties when handling problems involving thousands of
contact events.

Until recently, the high cost of parallel computing limited
the analysis of such large systems to a small number of
research groups. This is rapidly changing owing in large
part to general-purpose computing on the GPU. Another
example of commercially available rigid body dynamics
software is NVIDIA’s PhysX [4]. This software is com-
monly used in real-time applications where performance
(rather than accuracy) is the primary goal. The goal of
our effort was to somewhat de-emphasize the efficiency
attribute and instead implement an open source, general-
purpose physics-based GPU solver for multibody dynam-
ics backed by convergence results that guarantee the ac-
curacy of the numerical solution.

Unlike the so-called penalty or regularization methods,
where the frictional interaction can be represented by a
collection of stiff springs combined with damping ele-
ments that act at the interface of the two bodies [5], the
approach embraced here draws on time-stepping proce-
dures producing weak solutions of the differential varia-

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

Figure 1: Chrono::Engine [1] simulation of a complex, rigid multi-
body mechanism with contacts and joints.

Figure 2: Chrono::Engine simulation of a tracked vehicle on a
granular soil. The GPU was used for both dynamics and collision
detection between tracks, sprockets, and pebbles [2].

tional inequality (DVI) problem, which describes the time
evolution of rigid bodies with impact, contact, friction,
and bilateral constraints. Early numerical methods based
on DVI formulations can be traced back to the early 1980s
and 1990s [6, 7, 8]. Recent approaches based on time-
stepping schemes have included both acceleration-force
linear complementarity problem (LCP) approaches [9, 10]
and velocity-impulse, LCP-based time-stepping methods
[11, 12, 13]. The LCPs, obtained as a result of the intro-
duction of inequalities accounting for nonpenetration con-
ditions in time-stepping schemes, coupled with a polyhe-
dral approximation of the friction cone, must be solved at
each time step in order to determine the system state con-
figuration as well as the Lagrange multipliers represent-
ing the reaction forces [7, 11]. If the simulation entails a
large number of contacts and rigid bodies, as is the case
for granular materials, the computational burden of clas-
sical LCP solvers can become significant. Indeed, a well-
known class of numerical methods for LCPs based onsim-
plex methods, also known asdirect or pivoting methods
[14], may exhibit exponential worst-case complexity [15].
Moreover, the three-dimensional Coulomb friction case
leads to a nonlinear complementarity problem (NCP). The
use of a polyhedral approximation to transform the NCP
into an LCP introduces unwanted anisotropy in friction
cones and significantly augments the size of the numeri-
cal problem [11, 12].

In order to circumvent the limitations imposed by the use
of classical LCP solvers and the limited accuracy associ-
ated with polyhedral approximations of the friction cone,
a parallel fixed-point iteration method with projection on
a convex set has been developed [16]. The method is
based on a time-stepping formulation that solves at ev-
ery step a cone-constrained quadratic optimization prob-
lem [17]. The time-stepping scheme has been proved to
converge in a measure differential inclusion sense to the
solution of the original continuous-time DVI. This paper

illustrates how this problem can be solved in parallel by
exploiting the parallel computational resources available
on NVIDIA’s GPU cards.

2. Core Method The formulation of the equations
of motion, that is, the equations that govern the time
evolution of a multibody system, is based on the so-
called absolute, or Cartesian, representation of the at-
titude of each rigid body in the system. The state of
the system is denoted by the generalized positionsq =[
rT

1 ,ε
T
1 , . . . , rT

nb
,εT

nb

]T
∈ R

7nb and their time derivatives

q̇ =
[
ṙT

1 , ε̇
T
1 , . . . , ṙ

T
nb
, ε̇T

nb

]T
∈ R

7nb, wherenb is the num-
ber of bodies,r j is the absolute position of the center of
mass of thejth body, and the quaternions (Euler param-
eters)ε j are used to represent rotation and to avoid sin-
gularities. Instead of using quaternion derivatives inq̇, it
is more advantageous to work with angular velocities ex-
pressed in the local (body-attached) reference frames; in
other words, the method described will use the vector of
generalized velocitiesv =

[
ṙT

1 , ω̄
T
1 , . . . , ṙ

T
nb
, ω̄T

nb

]T
∈ R

6nb.
Note that the generalized velocity can be easily obtained
asq̇= L(q)v, whereL is a linear mapping that transforms
eachω̄i into the corresponding quaternion derivativeε̇i

by means of the linear algebra formulaε̇i =
1
2GT(q)ω̄i ,

with 3x4 matrix G(q) as defined in [18]. We denote
by fA (t,q,v) the set of applied, or external, generalized
forces.

2.1. Bilateral constraints Bilateral constraints repre-
sent kinematic pairs, for example spherical, prismatic or
revolute joints, and can be expressed as algebraic equa-
tions constraining the relative position of two bodies. As-
suming a setB of constraints is present in the system, they
lead to the scalar equationsΨi(q, t) = 0, i ∈ B . Assum-
ing smoothness of constraint manifold,Ψi(q, t) can be
differentiated to obtain the Jacobian∇qΨi = [∂Ψi/∂q]T .

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

The notation∇ΨT
i = ∇qΨT

i L(q) will be used in what fol-
lows.

2.2. Contacts with friction Given a large number
of rigid bodies with different shapes, modern collision-
detection algorithms are able to find efficiently a set of
contact points, that is, points where agap functionΦ(q)
can be defined for each pair of near-enough shape fea-
tures. Where defined, such a gap function must satisfy
the nonpenetration conditionΦ(q) ≥ 0 for all contact
points.

When a contacti is active, that is,Φi(q) = 0, a normal
force and a tangential friction force act on each of the two
bodies at the contact point. In terms of notation,A will de-
note the set of all active contacts for a given configuration
q of the system at timetl . In fact,A (q,ε) includes even
potential contacts between bodies that are attl within a
distanceε of each other and might collide during the time
step fromtl to tl+1. If no collision occurs, the algorithm
will lead to zero normal/tangential forces for inactive col-
lisions that were conservatively added toA (q,ε).

We use the classical Coulomb friction model to define
these forces [12]. If the contact is not active, that is,
Φi(q) > 0, no contact or friction forces exist. This im-
plies that the mathematical description of the model leads
to a complementarity problem [11]. Consider two bodies
A andB in contact, as shown in Fig. 3. Letni be the nor-
mal at the contact pointing toward the exterior of the body
of lower index, which by convention is considered to be
bodyA. Let ui andwi be two vectors in the contact plane
such thatni ,ui ,wi ∈R

3 are mutually orthonormal vectors.
The frictional contact force is impressed on the system by
means of multiplierŝγi,n ≥ 0, γ̂i,u, andγ̂i,w, which lead to
the normal component of the forceFi,N = γ̂i,nni and the
tangential component of the forceFi,T = γ̂i,uui + γ̂i,wwi .
The Coulomb model is expressed by using the maximum
dissipation principle:

(̂γi,u, γ̂i,w) = argmin√
γ̂2
i,u+γ̂2

i,w≤µi γ̂i,n

vT
i,T (̂γi,uui + γ̂i,wwi) . (1)

2.3. The complete model The time evolution of the
dynamical system is governed by the following differen-

tial variational inequality [16]:

q̇ = L(q)v
Mv̇ = f (t,q,v)+ ∑

i∈B
γ̂i,b∇Ψi+

+ ∑
i∈A

(̂γi,nDi,n+ γ̂i,uDi,u+ γ̂i,wDi,w)

i ∈ B : Ψi(q, t) = 0
i ∈ A : γ̂i,n ≥ 0 ⊥ Φi(q)≥ 0, and

(̂γi,u, γ̂i,w) = argmin
µi γ̂i,n≥

√
γ̂2
i,u+γ̂2

i,w

vT (̂γi,uDi,u+ γ̂i,wDi,w) .

(2)

The tangent space generatorsDi = [Di,n, Di,u, Di,w] ∈
R

6nb×3 are sparse and are defined given a pair of contact-
ing bodiesA andB as

DT
i =

[0 . . . −AT
i,p AT

i,pAAs̃i,A 0 . . .

0 . . . AT
i,p −AT

i,pABs̃i,B 0 . . .] ,
(3)

where, using the notation in Fig. 3,AA is the orientation
matrix associated with bodyA, A i,p = [ni ,ui ,wi] is the
R

3×3 matrix of the local coordinates of theith contact, the
vectors̄si,A ands̄i,B are the contact point positions in body
coordinates. A tildẽx over a vectorx ∈ R

3 represents the
skew symmetric matrix associated with the outer product
of two vectors [18].

3. The time-stepping scheme Given a positionq(l)

and velocityv(l) at the time stept(l), the numerical so-
lution is found at the new time stept(l+1) = t(l) + h by
solving the following optimization problem with equilib-
rium constraints [19]:

M(v(l+1) −v(l)) = hf(t(l),q(l),v(l))+ ∑
i∈B

γi,b∇Ψi +

+∑i∈A
(
γi,nDi,n+ γi,uDi,u+ γi,w Di,w

)
, (4)

i ∈ B : 1
hΨi(q(l), t)+∇ΨT

i v(l+1)+ ∂Ψi
∂t = 0 (5)

i ∈ A : 0≤ 1
hΦi(q(l))+ DT

i,nv(l+1) ⊥ γi
n ≥ 0, (6)

(
γi,u,γi,w

)
= argmin

µi γi,n≥
√

γ2
i,u+γ2

i,w

v(l+1),T
(
γi,u Di,u+ γi,wDi,w

)
(7)

q(l+1) = q(l)+hL(q(l))v(l+1). (8)

Here, γs represents the constraint impulse of a contact
constraint; that is,γs = ĥγs, for s= n,u,w. The 1

hΦi(q(l))
term achieves constraint stabilization; its effect is dis-
cussed in [20]. Similarly, the term1

hΦi(q(l)) achieves
stabilization for bilateral constraints. The scheme con-
verges to the solution of a measure differential inclusion
[17] when the step sizeh→ 0.

The proposed approach casts the problem as a monotone
optimization problem through a relaxation over the com-
plementarity constraints, replacing Eq. (6) with

i ∈ A : 0≤ 1
hΦi(q(l))+ DT

i,nv(l+1)−

−µi
√

(vT Di,u)2+(vT Di,w)2 ⊥ γi
n ≥ 0.

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

Body

A
Body

B

0
x

y

z

ni

ui

wi

rB

rA

si,A

i-th contact

si,B

x

y

z

x y

z

Figure 3: Contacti between two bodiesA,B∈ {1,2, . . . ,nb}

The solution of the modified time-stepping scheme will
approach the solution of the same measure differential
inclusion forh → 0 as the original scheme [17], yet, in
some situations, for largeh, µ, or relative velocityv(l+1);
i.e., when not in an asymptotic regime, this relaxation
can introduce motion oscillations. It was shown in [16]
that the modified scheme is a cone complementarity prob-
lem (CCP), which can be solved efficiently by an itera-
tive numerical method that relies on projected contractive
maps. Omitting for brevity some of the details discussed
in [16, 21], we note that the algorithm makes use of the
following vectors:

k̃ ≡ Mv (l)+hf(t(l),q(l),v(l)) (9)

bi ≡
{

1
hΦi(q(l)),0,0

}T
i ∈ A , (10)

bi ≡ 1
hΨi(q(l), t)+ ∂Ψi

∂t , i ∈ B . (11)

The solution, in terms of dual variables of the CCP (the
multipliers), is obtained by iterating the following con-
traction maps until convergence [19]:

∀i∈A : γr+1
i = Πϒi

[
γr
i −ωηi

(
DT

i vr +bi
)]

(12)

∀i∈B : γr+1
i = Πϒi

[
γr
i −ωηi

(
∇ΨT

i vr +bi
)]
. (13)

At each iterationr, before repeating (12) and (13), also
the primal variables (the velocities) are updated as

vr+1 = M−1

(

∑
z∈A

Dzγr+1
z + ∑

z∈B

∇Ψzγr+1
z + k̃

)
. (14)

Note that the superscript(l +1) was omitted. Interested
readers are referred to [16] for a proof of the convergence
of this method.

4. Algorithms, Implementations, and Evaluations
A detailed analysis of the computational bottlenecks in
the proposed multibody dynamics analysis method reveals
that the CCP solution and the prerequisite collision detec-
tion represent, in this order, the most compute-intensive
tasks of the numerical solution at each integration (sim-
ulation) time step. This section concentrates on two ap-
proaches that expose a level of fine-grained parallelism
that allows an efficient implementation of these two tasks
on the GPU.

4.1. Parallel multibody dynamics GPU solver

Buffers for data structures The data structures on the
GPU are implemented as large arrays (buffers) to match
the execution model associated with NVIDIA’s CUDA.
Four main buffers are used: the contacts buffer, the con-
straints buffer, the reduction buffer, and the bodies buffer.
The data structure for the contacts has been mapped into
columns of four floats, as shown in Fig. 4. Each con-
tact will reference its two touching bodies through the two
pointersBA andBB, in the fourth and seventh rows of the
contact data structure. There is no need to store the entire
Di matrix for the ith contact because it has zero entries

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

for most of its part, except for the two 12x3 blocks corre-
sponding to the coordinates of the two bodies in contact.
In fact, once the velocities of the two bodiesṙAi , ωAi and
ṙBi , ωBi have been fetched, the productDT

i vr in Eq. (12)
can be performed as

DT
i vr = DT

i,vA
ṙAi +DT

i,ωA
ωAi +DT

i,vB
ṙBi +DT

i,ωB
ωBi (15)

with the adoption of the following 3x3 matrices:

DT
i,vA

= −AT
i,p, DT

i,ωA
= AT

i,pAA˜̄si,A

DT
i,vB

= AT
i,p, DT

i,ωB
= −AT

i,pAB˜̄si,B.
(16)

SinceDT
i,vA

= −DT
i,vB

, there is no need to store both ma-
trices. Therefore, in each contact data structure only a
matrix DT

i,vAB
is stored, which is then used with opposite

signs for each of the two bodies.

The velocity update vector∆vi , needed for the sum in
Eq. (14) also is sparse: it can be decomposed into small
subvectors. Specifically, given the masses and the iner-
tia tensors of the two bodiesmAi , mBi and JAi , JBi , the
term∆vi will be computed and stored in four parts as fol-
lows:

∆ṙAi = m−1
Ai

Di,vA∆γr+1
i , ∆ωAi = J−1

Ai
Di,ωA∆γr+1

i

∆ṙBi = m−1
Bi

Di,vB∆γr+1
i , ∆ωBi = J−1

Bi
Di,ωB∆γr+1

i .
(17)

Note that those four parts of the∆vi terms are not stored
in the ith contact data structure or in the data structure of
the two referenced bodies (because multiple contacts may
refer the same body, they would overwrite the same mem-
ory position). These velocity updates are instead stored in
the reduction buffer, which will be used to efficiently per-
form the summation in Eq. (14). This will be discussed
shortly.

The constraints buffer, shown in Fig. 5, is based on
a similar concept. Jacobians∇Ψi of all scalar con-
straints are stored in a sparse format, each correspond-
ing to four rows∇Ψi,vA, ∇Ψi,ωA, ∇Ψi,vB, ∇Ψi,ωB. There-
fore the product∇ΨT

i vr in Eq. (13) can be performed
as the scalar value∇ΨT

i vr = ∇ΨT
i,vA

ṙAi + ∇ΨT
i,ωA

ωAi +

∇ΨT
i,vB

ṙBi +∇ΨT
i,ωB

ωBi . Also, the four parts of the sparse
vector∆vi can be computed and stored as

∆ṙAi = m−1
Ai

∇Ψi,vA∆γr+1
i , ∆ωAi = J−1

Ai
∇Ψi,ωA∆γr+1

i

∆ṙBi = m−1
Bi

∇Ψi,vB∆γr+1
i , ∆ωBi = J−1

Bi
∇Ψi,ωB∆γr+1

i .
(18)

Figure 6 shows that each body is represented by a data
structure containing the state (velocity and position), the
mass moments of inertia and mass values, and the exter-
nal applied forceF j and torqueC j . Note that to speed
the iteration, it is advantageous to store the inverse of the

mass and inertias rather than their original values, because
the operationM−1Di∆γr+1

i must be performed multiple
times.

The parallel algorithm A parallelization of computa-
tions in Eq. (12) and Eq. (13) is easily implemented, by
simply assigning one contact per thread (and, similarly,
one constraint per thread). In fact the results of these com-
putations would not overlap in memory, and two parallel
threads will never need to write in the same memory lo-
cation at the same time. These are the two most numer-
ically intensive steps of the CCP solver, called theCCP
contact iteration kerneland theCCP constraint iteration
kernel.

However, the sums in Eq. (14) cannot be performed with
embarrassingly-parallel implementations: it may happen
that two or more contacts need to add their velocity up-
dates to the same rigid body. A possible approach to
overcome this problem is presented in [22], for a sim-
ilar problem. We adopted an alternative method, with
higher generality, based on theparallel segmented scan
algorithm [23] that operates on an intermediate reduction
buffer (Fig. 7); this method sums the values in the buffer
using a binary-tree approach that keeps the computational
load well balanced among the many thread processors. In
the example of Fig. 7, the first constraint refers to bodies
0 and 1, the second to bodies 0 and 2; multiple updates
to body 0 are then accumulated with parallel segmented
reduction.

The following pseudocode shows the sequence of main
computational phases at each time step, for the most part
executed as parallel kernels on the GPU.

Algorithm 1: Time Stepping Using GPU

1. (GPU, see section 4.2.) Perform collision detec-
tion between bodies, obtainingnA possible contact
points within a distanceδ, as contact positionssi,A,
si,B on the two touching surfaces, and normalsni .

2. (GPU, body-parallel) Force kernel. For each body,
compute forcesf(t(l),q(l),v(l)), if any (for example,
gravity). Store these forces and torques intoFj and
Cj .

3. (GPU, contact-parallel) Contact preprocessing
kernel. For each contact, given contact normal and
position, compute in place the matricesDT

i,vA
, DT

i,ωA
,

andDT
i,ωB

. Then computeηi and the contact resid-

ualbi = {1
hΦi(q),0,0}T .

4. (GPU, body-parallel) CCP force kernel. For each

body j, initialize body velocities:̇r (l+1)
j = h m−1

j F j

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

Thread

 Thread block … Thread block

 Thread grid

 GPU contacts buffer i-th contact data

bi,n

bi,u

bi,v

Bi,A

Bi,B

ηi

γγγγi,n γγγγ i,u γγγγ i,v µi

DT
 i,vA,B

DT
 i,ωA

1

2

3

4

5

6

7

8

9

10

float4

DT
 i,ωB

Ri,A Ri,B ni,A ni,B 11

Figure 4: Grid of data structures for frictional contacts, in GPU
memory.

Thread
 Thread block … Thread block

 Thread grid

 GPU constraints buffer

 j-th constraint data

 i,vA
 ∇ΨΨΨΨT

 i,vB
 ∇ΨΨΨΨT

Bi,A

 Bi,B

 i,ωA
 ∇ΨΨΨΨT

 i,ωB
 ∇ΨΨΨΨT

 ηηηηi γγγγi bi

1

2

3

4

5

float4

6 Ri,A Ri,B ni,A ni,B

Figure 5: Grid of data structures for scalar constraints, inGPU
memory.

Thread
 Thread block … Thread block

 Thread grid

 GPU bodies buffer

 j-th body data

1

2

3

4

5

6

7

float4

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

Rj

Figure 6: Grid of data structures for rigid bodies, in GPU memory.

 GPU reduction buffer

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

1

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

 ∆∆∆∆ωωωω

0

∆∆∆∆v

float4

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

0

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

2

vj,x vj,y

vj,z

ω j,x ω j,y ω j,z
x j,x x j,y x j,z
ρj,0 ρj,1 ρj,2 ρj,3

Jj,x Jj,y

Jj,x

mj

Fj,x Fj,y Fj,z
Cj,x Cj,y Cj,z

 -1 -1 -1 -1

3

Body 0

Body 1

Body 2

Constraint

K
er

ne
l:

C

C
P

 im
pu

ls
e

K
er

ne
l:

re

du
ct

io
n

K
er

ne
l:

sp

e
e

d
up

da
te

0

1

2

3

. . .

 i,vA
 ∇ΨΨΨΨT

 i,vB
 ∇ΨΨΨΨT

0

 1

 i,ωA
 ∇ΨΨΨΨT

 i,ωB
 ∇ΨΨΨΨT

 ηηηηi γγγγi bi

0 2 0 0

Constraint

 i,vA
 ∇ΨΨΨΨT

 i,vB
 ∇ΨΨΨΨT

0

 2

 i,ωA
 ∇ΨΨΨΨT

 i,ωB
 ∇ΨΨΨΨT

 ηηηηi γγγγi bi

1 3 1 0

. . .

Figure 7: The reduction buffer avoids race conditions in parallel
updates of the same body state.

andω(l+1)
j = h J−1

j C j .

5. (GPU, contact-parallel) CCP contact iteration
kernel. For each contacti, do
γr+1
i = λ Πϒi

(
γr
i −ωηi

(
DT

i vr +bi
))

+ (1− λ)γr
i .

Note that DT
i vr is evaluated with sparse data, us-

ing Eq. (15). Store∆γr+1
i = γr+1

i − γr
i in the contact

buffer. Compute sparse updates to the velocities of
the two connected bodiesA andB, and store them
in theRi,A andRi,B slots of the reduction buffer.

6. (GPU, constraint-parallel) CCP constraint itera-
tion kernel. For each constrainti, do
γr+1
i = λ

(
γr
i −ωηi

(
∇ΨT

i vr +bi
))

+ (1 − λ)γr
i .

Store∆γr+1
i = γr+1

i − γr
i in the contact buffer. Com-

pute sparse updates to the velocities of the two con-
nected bodiesA andB, and store them in theRi,A

andRi,B slots of the reduction buffer.

7. (GPU, reduction-slot-parallel) Segmented reduc-
tion kernel. Sum all the∆ṙ i , ∆ωi terms belonging
to the same body, in the reduction buffer.

8. (GPU, body-parallel) Body velocity updates ker-
nel. For each j body, add the cumulative veloc-

ity updates that can be fetched from the reduction
buffer, using the indexRj .

9. Repeat from step 5 until convergence or until num-
ber of CCP steps reachedr > rmax.

10. (GPU, body-parallel) Time integration kernel.
For each j body, perform time integration as

q(l+1)
j = q(l)

j +hL(q(l)
j)v(l+1)

j .

11. (Host, serial) If needed, copy body, contact, and
constraint data structures from the GPU to host
memory.

4.2. Parallel collision detection algorithm The 3D
collision detection algorithm implemented performs a
two-level spatial subdivision using axis aligned bounding
boxes. The first partitioning occurs at the CPU level and
yields a relatively small number of largeboxes. The sec-
ond partitioning of each of these boxes occurs at the GPU
level leading to a large number of smallbins. The GPU
3D collision detection, which handles spheres, ellipsoids,

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

and planes, occurs in parallel at the bin level. Any other
geometries are represented as a collection of these prim-
itives using a padding (decomposition) process presented
in detail in [2]. Several kernel calls build on each other
to eventually enable, in a one-thread-per-bin GPU paral-
lel fashion, an exhaustive collision detection process in
which threadi checks for collisions between all the bodies
that happen to intersect the associated bini. This requires
O (b2

i) computational effort, wherebi represents the num-
ber of bodies touching bini. The value ofbi is controlled
by an appropriate selection of the bin size. Figure 8 il-
lustrates a typical collision detection scenario and is used
in what follows to outline the nine stages of the proposed
approach.

Stage 1.The process begins by identifying all object-to-
bin intersections. As Figure 9 shows, an object (body)
can intersect, or touch, more than one bin; there is no
limit to how many such intersections take place. The min-
imum and maximum bounding points of each object are
determined and placed in their respective bins. For ex-
ample, Fig. 9 shows that object 4’s minimum point lies in
B4 and its maximum point in A5. The entire object must
fit between the minimum and maximum points; therefore
the number of bins that the object intersects can be deter-
mined quickly by counting the number of bins between
the two points in each axis and multiplying them. In this
case the number is 4. This number of bins touched by
each body is saved into an array,T (see Fig. 10), of size
equal to the number of objectsN.

Figure 8: Two-dimensional example used to introduce the nine stages of
the collision detection process. The grid is aligned to a global Cartesian
reference frame.

Figure 9: Minimum and maximum bounds of object, based on spatial
subdivision in Fig. 8.

Stage 2. Next, we perform an inclusive parallel prefix
sum onT. The CUDA-based Thrust library implementa-
tion [24] of the scan algorithm operates onT to return in
S (see Fig. 11) the memory offset information.

Stage 3. An array B (see Fig. 12), is first allocated of
size equal to the value of the last element inS. This value
is equal to the total number of object-bin intersections.
Each element inB is set to a key-value pair of two un-
signed integers. The key is the bin id and the value is the
object id. As Fig. 18 shows, objects not fully contained
within the outer edge of the grid are restricted so that their
maximum bound cannot be greater than the bounds of the
uniform grid. The per-body parallel process used to deter-
mine the object-bin; i.e., value-key, pairs is essentiallythe
same as in Stage 1 with the caveat that this information is
now saved inB rather than just being counted inT. In this
stage, the memory offsets contained inS are used so that
the thread associated with each body can write data to the
correct location inB.

Stage 4.The key-value arrayB is sorted in this stage by
key, that is, by bin id. This effectively inverts the body-
to-bin mapping to a bin-to-body mapping by grouping to-
gether all bodies in a given bin for further processing. The
stage draws on the GPU-based radix sort from the Thrust
library [24].

Stage 5.Next, we identify in parallel the start of each bin
in the sorted arrayB by using the pseudocode in Fig. 16.
The number of threads used to this end is equal to the
number of elements inB; i.e., the number of object-bin
interactions. Each thread reads the current and previous
bin value; if these values differ, then the start of a bin has
been detected. The first thread reads only the first ele-
ment and records it as the initial value. The starting posi-

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

Figure 10: ArrayT with N entries, based on spatial subdivision in Fig. 8.

Figure 11: Result of prefix sum operation onT, based on spatial sub-
division in Fig. 8. Each entry represents an object’s offsetbased on the
number of bins it touches.

Figure 12: ArrayB, based on spatial subdivision in Fig. 8.

tions for each bin are written into an arrayC of key-value
pairs of size equal to the number of bins in the 3D grid.
When the start of a bin is found in arrayB, the thread and
bin id are saved as the key and value, respectively. This
pair is written to the element inC indexed by the bin id.
Note that not all bins are active. Inactive bins (i.e., bins
touched by zero or one bodies), are set to 0xffffffff, the
largest possible value for an unsigned integer on a 32-bit,
X86 architecture. Figure 14 shows the outcome of this
stage.

Figure 14: ArrayC, based on spatial subdivision in Fig. 8.

Figure 15: Sorted arrayC, based on spatial subdivision in Fig. 8.

Figure 16: Pseudocode: Bin starting index computation.

Stage 6. The arrayC is next radix-sorted [24] by key.
Consequently, inactive bins (identified by the 0xffffffff en-
tries, represented for brevity as 0xfff in Fig. 15) “migrate”
to the end of the array.

Stage 7. The total number of active bins is determined
next by finding the index in the sorted arrayC of the

first occurrence of 0xffffffff. Determining this index al-
lows memory and thread usage to be allocated accurately
thus having no threads wasted on inactive bins. One
GPU thread is assigned in this stage to each active bin to
perform an exhaustive, brute-force, bin-parallel collision
detection for the purpose ofonly countingthe collision
events. By carefully selecting the bin size, the number of
objects being tested for collisions is expected to be small;
i.e., on average, in the range of 3 to 4 objects per bin. Af-
ter counting the total number of collisions in its bin, the
thread writes that tally into an unsigned integer arrayD of
size equal to the number of active bins.

More involved, the algorithm for counting and subse-
quently computing ellipsoid collision information is de-
scribed in detail in [25]. For spheres, the algorithm checks
for collisions by calculating the distance between the ob-
jects. Contacts can occur only when the distance between
the spheres’ centers is less than or equal to the sum of their
radii. Because one object could be contained within more
than one bin, checks were implemented to prevent double
counting. Since the midpoint of a collision volume can be
contained only within one bin, only one thread (associated
with that bin) will register/count a collision event. For ex-
ample, in order to determine the midpoint of the collision
volume we use the vector from centroid of object 4 to the
centroid of object 7; see Fig. 17. The points where this
vector intersects each object defines a segment; the loca-
tion of the middle of this segment is used to decide the
unique bin that claims ownership of the contact. If one
object is completely inside the other, the midpoint of the
collision volume is the centroid of the smaller object. Us-
ing this process, the number of collisions are counted for
each bin and written toD. This stage is outlined in the
pseudocode in Fig. 19.

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

Figure 13: Sorted arrayB, based on spatial subdivision in Fig. 8.

Figure 17: Center of collision volume. Based on spatial subdivi-
sion in Fig. 8.

Figure 18: Max bound is constrained to bin A5.

Figure 19: Pseudocode: Determine number of collisions.

Figure 20: Pseudocode: Computing collision data.

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

Stage 8.We perform next an inclusive parallel prefix scan
operation [24] onD. This returns an arrayE whose last
element is the total number of collisions in the uniform
grid, a value that allows an exact amount of memory to be
allocated in the next stage.

Stage 9. The final stage of the collision detection algo-
rithm computes the actual contact information. To this
end, an array of contact information structuresF is allo-
cated with a size equal to the value of the last element inE.
The collision pairs are then found by using the algorithm
outlined in Stage 7. Instead of simply counting the num-
ber of collisions, actual contact information iscomputed
and writtento its respective place inF; see pseudocode in
Fig. 20.

5. Final Evaluation The GPU iterative solver and the
GPU collision detection outlined herein have been embed-
ded in our C++ simulation software Chrono::Engine. We
tested the GPU-based parallel method with benchmark
problems and compared it with the serial implementation
in terms of efficiency.

For the results in Table 1, we simulated densely packed
spheres that flow from a silo. The CPU was an Intel Xeon
2.66 GHz; the GPU was an NVIDIA Tesla C1060. The
simulation time increases linearly with the number of bod-
ies in the model. The GPU algorithm is at least one order
of magnitude faster than the serial algorithm.

The test of Fig. 21 simulates 1 million rigid bodies inside a
tank being shaken horizontally. This represents to date the
largest multibody dynamics problem solved on one GPU
card. The track system shown in Fig. 2 was exercised on
granular terrain that was made up of more than 480,000
bodies.

6. Validation against and comparison with state-of-
the-art sequential collision detection A first set of ex-
periments was carried out to validate the implementation
of the algorithm using various collections of spheres that
display a wide spectrum of collision scenarios: disjoint
spheres, spheres fully containing other spheres, spheres
barely touching each other, and spheres that are in con-
tact but not full containment. The first column of Table 2
reports the number of objects for five scenarios. For each
scenario the error between the reference algorithm and the
implemented algorithm is reported for the total number
of contacts identified, the average error and standard de-
viation of the contact distance, contact unit normal, and
point of contact. The reference algorithm used for vali-
dation was the sequential (nonparallel) collision detection
implementation available in the open source, state-of-the-
art Bullet Physics Engine [26].

These results demonstrate that the error in the proposed
algorithm, when compared to the CPU implementation, is
of the order of single precision round-off error. This is
traced back to the fact that the CPU-based algorithm per-
forms computations in double precision, while the GPU
algorithm uses single precision arithmetic. For all scenar-
ios the number of contacts was the same in both the CPU
and GPU analyses.

A second set of numerical experiments was carried out
to gauge the efficiency of the parallel CD algorithm de-
veloped. The reference used was the same sequential CD
implementation from Bullet Physics Engine. The CPU
used in this experiment (relevant for the Bullet implemen-
tation) was AMD Phenom II Black X4 940, a quad core
3.0 GHz processor that drew on 16 GB of RAM. The GPU
used was NVIDIA’s Tesla C1060. The operating system
used was the 64bit version of Windows 7. Two scenar-
ios were considered. The first scenario determined how
many contacts a single GPU could determine before run-
ning out of memory. As Fig. 23 shows, approximately
22 million contacts were determined in less than 4 sec-
onds. The second scenario gauged the relative speedup
gained with respect to a serial implementation. The first
test stopped when dealing with about 6 million contacts
(see horizontal axis of Fig. 24), when Bullet ran into mem-
ory management issues. While providing a sufficient level
of accuracy, the single precision GPU algorithm, tailored
to deal with sphere-to-sphere contact only, led to a rela-
tive speedup of up to 180. We want to emphasize that the
180 factor does not reflect a GPU vs. CPU issue. The
Bullet engine was the solution used prior to using the pro-
posed method. It was a much more versatile collision de-
tection engine, which in retrospect was unnecessarily used
in double precision.

Figure 22: Collision time as the number of contacts increases.

6.1. Scaling analysis Our second set of experiments
was designed to illustrate the scaling of the parallel nu-
merical solution and collision detection. The vehicle used
to this end was the simulation of a cylindrical tank that had
a constant height with the radius varying with the number

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

Number of Bodies
CPU GPU

Speedup CCP Speedup CDCCP CCP
[s] [s]

16,000 7.11 0.57 12.59 4.67
32,000 16.01 1.00 16.07 6.14
64,000 34.60 1.97 17.58 10.35
128,000 76.82 4.55 16.90 21.71

Table 1: Benchmark test of the GPU CCP solver and GPU collisiondetection.

Figure 21: Light ball floating on 1 million rigid bodies moving around in a tank while interacting through friction and contact.

Table 2: Errors computed by taking the Euclidean norm of the difference between the collision data from Bullet and the collision detection algorithm
discussed. AE stands for Average Error. SD stands for Standard Deviation

Spheres
Contacts

Contact Dist. Contact Normal Contact Point
Error [m] Error [m] Error [m]

[×106]
AE SD AE SD AE SD

[×10−7] [×10−4] [×10−10] [×10−7] [×10−6] [×10−3]

1 462,108 1.46 2.48 0.82 2.21 2.73 2.98
2 1,015,556 0.74 2.91 1.91 2.15 2.37 3.35
3 1,379,397 1.69 3.52 2.75 2.26 3.58 4.09
4 1,530,309 5.49 4.14 2.33 2.24 1.94 4.78
5 1,995,548 6.35 4.38 1.09 2.23 3.10 5.09

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

REFERENCES REFERENCES

of spheres added to the tank. Specifically, the number of
spheres in the tank was increased with each simulation
without increasing the fill-in depth of the tank. Instead,
the radius of the cylinder was increased for each simula-
tion based on the number of spheres and their packing fac-
tor. Each test was run using an NVIDIA Tesla C1060 until
the number of collisions and the compute time per solu-
tion time step reached steady state. The results presented
in Table 3 and graphed in Fig. 22 indicate that the over-
all algorithm scales linearly. Furthermore, the results sug-
gest that the bulk of the computation at each time step was
taken by the GPU dynamics solver, with a small amount of
time taken up by the collision detection. These collision
detection times are longer than the raw times presented
earlier due to the pre- and post-processing required by the
physics engine as it organizes data on the GPU for use
between the solver and collision detection.

Figure 23: Collision time vs. contacts detected. This graph shows that
when the algorithm is executed on a single GPU it scales linearly.

Figure 24: Overall speedup when comparing the CPU algorithm to the
GPU algorithm. The maximum speedup achieved was approximately
180 times.

7. Future Directions The GPU dynamics engine pro-
posed is more than one order of magnitude faster than
a previously developed sequential implementation. The
largest GPU simulation run to date had approximately 1.1
million bodies. Two barriers prevented the simulation of
larger systems. First, we exhausted the GPU memory;
second, we noticed a convergence stalling in the Gauss-
Jacobi algorithm for CCP problems with more than 15
million variables. In order to address these aspects we are
developing a distributed computing framework that lever-
ages multiple GPUs, and we are investigating a minimal
residual type Krylov method for the CCP solution. For
the latter, GPU sparse preconditioning remains an open
question.

Acknowledgments We would like to thank Richard Tonge
for the substantial feedback and assistance he provided in gen-
erating this manuscript. Financial support for D. Negrut was
provided in part by the National Science Foundation Awards
CMMI–0700191 and CMMI–0840442. Financial support for
A.Tasora was provided in part by the Italian Ministry of Edu-
cation under the PRIN grant 2007Z7K4ZB. Mihai Anitescu was
supported by the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357. We thank NVIDIA and Mi-
crosoft for sponsoring our research programs in the area of high-
performance computing.

References

[1] Tasora A. Chrono::Engine, An Open
Source Physics–Based Dynamics Sim-
ulation Engine. Available online at
www.deltaknowledge.com/chronoengine, 2006.

[2] T. Heyn. Simulation of Tracked Vehicles on
Granular Terrain Leveraging GPU Comput-
ing. M.S. thesis, Department of Mechanical
Engineering, University of Wisconsin–Madison,
http://sbel.wisc.edu/documents/TobyHeynThesisfinal.pdf,
2009.

[3] J. Madsen, N. Pechdimaljian, and D. Negrut. Penalty
versus complementarity-based frictional contact of
rigid bodies: A CPU time comparison. Technical
Report TR-2007-06, Simulation-Based Engineering
Lab, University of Wisconsin, Madison, 2007.

[4] PhysX. NVIDIA PhysX for De-
velopers. Available online at
http://developer.nvidia.com/object/physx.html,
2010.

[5] Peng Song, Jong-Shi Pang, and Vijay Kumar.
A semi-implicit time-stepping model for frictional
compliant contact problems.International Journal
of Numerical Methods in Engineering, 60(13):267–
279, 2004.

[6] Jean J. Moreau. Standard inelastic shocks and
the dynamics of unilateral constraints. In G. Del
Piero and F. Macieri, editors,Unilateral Prob-
lems in Structural Analysis, pages 173–221, New
York, 1983. CISM Courses and Lectures no. 288,
Springer–Verlag.

[7] P. Lotstedt. Mechanical systems of rigid bodies sub-
ject to unilateral constraints.SIAM Journal of Ap-
plied Mathematics, 42(2):281–296, 1982.

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

REFERENCES REFERENCES

Table 3: Total time taken per time step at steady state and the number of contacts associated with it.

Objects Total Time GPU Collision
GPU Solver Contacts

[×106] [sec] Detection [sec]
0.2 12.1190 1.0758 10.5881 718,377
0.4 23.2806 1.9746 20.4606 1,403,784
0.6 35.0433 2.9785 30.7971 2,124,639
0.8 46.9516 4.0234 41.2297 2,838,832
1.0 58.1518 4.9473 51.1686 3,548,594

[8] M. D. P. Monteiro Marques. Differential Inclu-
sions in Nonsmooth Mechanical Problems: Shocks
and Dry Friction, volume 9 ofProgress in Nonlin-
ear Differential Equations and Their Applications.
Birkhäuser Verlag, Basel, 1993.

[9] David Baraff. Issues in computing contact forces for
non-penetrating rigid bodies.Algorithmica, 10:292–
352, 1993.

[10] Jong-Shi Pang and Jeffrey C. Trinkle. Comple-
mentarity formulations and existence of solutions
of dynamic multi-rigid-body contact problems with
Coulomb friction. Mathematical Programming,
73(2):199–226, 1996.

[11] David E. Stewart and Jeffrey C. Trinkle. An implicit
time-stepping scheme for rigid-body dynamics with
inelastic collisions and Coulomb friction.Interna-
tional Journal for Numerical Methods in Engineer-
ing, 39:2673–2691, 1996.

[12] Mihai Anitescu and Florian A. Potra. Formulat-
ing dynamic multi-rigid-body contact problems with
friction as solvable linear complementarity prob-
lems.Nonlinear Dynamics, 14:231–247, 1997.

[13] David E. Stewart. Rigid-body dynamics with fric-
tion and impact.SIAM Review, 42(1):3–39, 2000.

[14] Richard W. Cottle and George B. Dantzig. Com-
plementary pivot theory of mathematical program-
ming. Linear Algebra and Its Applications, 1:103–
125, 1968.

[15] David Baraff. Fast contact force computation for
nonpenetrating rigid bodies. InComputer Graphics
(Proceedings of SIGGRAPH), pages 23–34, 1994.

[16] M. Anitescu and A. Tasora. An iterative approach
for cone complementarity problems for nonsmooth
dynamics. Computational Optimization and Appli-
cations, 47(2):207–235, 2010.

[17] Mihai Anitescu. Optimization-based simulation of
nonsmooth rigid multibody dynamics.Mathemati-
cal Programming, 105(1):113–143, 2006.

[18] E. J. Haug. Computer-Aided Kinematics and Dy-
namics of Mechanical Systems Volume-I. Prentice-
Hall, Englewood Cliffs, New Jersey, 1989.

[19] A. Tasora. A Fast NCP Solver for Large Rigid-Body
Problems with Contacts. In C.L. Bottasso, editor,
Multibody Dynamics: Computational Methods and
Applications, pages 45–55. Springer, 2008.

[20] Mihai Anitescu and Gary D. Hart. A constraint-
stabilized time-stepping approach for rigid multi-
body dynamics with joints, contact and friction.In-
ternational Journal for Numerical Methods in Engi-
neering, 60(14):2335–2371, 2004.

[21] A. Tasora, D. Negrut, and M. Anitescu. Large-scale
parallel multi-body dynamics with frictional contact
on the graphical processing unit.Journal of Multi-
body Dynamics, 222(4):315–326, 2008.

[22] T. Harada. Real-time rigid body simulation on
GPUs.GPU Gems, 3:611–632, 2007.

[23] S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens.
Scan primitives for GPU computing. InProceed-
ings of the 22nd ACM SIGGRAPH/EUROGRAPH-
ICS symposium on Graphics hardware, page 106.
Eurographics Association, 2007.

[24] J. Hoberock and N. Bell. Thrust: A Par-
allel Template Library. Available online at
http://code.google.com/p/thrust/, 2009.

[25] A. Pazouki, H. Mazhar, and D. Negrut. Paral-
lel ellipsoid collision detection with application in
contact dynamics-DETC2010-29073. In Shuichi
Fukuda and John G. Michopoulos, editors,Proceed-
ings to the 30th Computers and Information in En-
gineering Conference. ASME International Design
Engineering Technical Conferences (IDETC) and
Computers and Information in Engineering Confer-
ence (CIE), 2010.

[26] Physics Simulation Forum. Bullet
Physics Library. Available online at
http://www.bulletphysics.com/Bullet/wordpress/bullet,
2008.

Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0700191

