NSF GRANT # 0700191
NSF PROGRAM NAME: CMMI

Simulation of Multibody Dynamics Leveraging New Numerical Methods
and Multiprocessor Capabilities

Dan Negrut
Simulation Based Engineering Lab, Department of Mechaikiogineering
University of Wisconsin, Madison, WI, 53706

Laurent Jay
Department of Mathematics
University of lowa, lowa-City, IA, 52242

Alessandro Tasora
Department of Industrial Engineering
University of Parma, V.G.Usberti 181/A, 43100, Parmayital

Mihai Anitescu
Mathematics and Computer Science Division
Argonne National Laboratory, 9700 South Cass Avenue, Argphn60439

Hammad Mazhar, Toby Heyn, Arman Pazouki
Simulation Based Engineering Lab, Department of Mechaikiogineering
University of Wisconsin, Madison, WI, 53706

Abstract This paper describes an approach for the dipgng simulation times. Results reported in [3] indicate
namic simulation of computer-aided engineering moddlsat the most popular rigid body software for engineer-
where large collections of rigid bodies interacting througng simulation, which uses an approach based on the so
millions of frictional contacts and bilateral mechanicalalled Discrete Element Method, runs into significant dif-
constraints. Thanks to the massive parallelism availafileulties when handling problems involving thousands of
on modern GPUs, we are able to simulate sand, gracontact events.

lar materials, and other complex physical scenarios w
one order of magnitude speedup when compared to a
guential CPU-based implementation of the discussed
gorithms.

Wntil recently, the high cost of parallel computing limited
tﬁ%' analysis of such large systems to a small number of
research groups. This is rapidly changing owing in large
part to general-purpose computing on the GPU. Another
example of commercially available rigid body dynamics

1. Introduction, Problem Statement, and Context software is NVIDIA's PhysX [4]. This software is com-

The ability to efficiently and accurately simulate thmonly used in real-umg apphcat.lons where performance
.Erather than accuracy) is the primary goal. The goal of

dynamics of rigid multibody systems is relevant i . .
. . . , : : ., our effort was to somewhat de-emphasize the efficiency
computer-aided engineering design, virtual reality, gide

games, and computer graphics. Devices composedagflbme and instead implement an open source, general-

rigid bodies interacting through frictional contacts an%urpose physics-based GPU solver for multibody dynam-
iICs backed by convergence results that guarantee the ac-

mechanical joints pose numerical solution challenges be- : .

. . . curacy of the numerical solution.
cause of the discontinuous nature of the motion. Conh-
sequently, even relatively small systems composed obalike the so-called penalty or regularization methods,
few hundred parts and constraints may require significavitere the frictional interaction can be represented by a
computational effort. More complex scenarios such as \allection of stiff springs combined with damping ele-
hicles running on pebbles and sand as in Fig. 1 and Fignints that act at the interface of the two bodies [5], the
soil and rock dynamics, and flow and packing of granulapproach embraced here draws on time-stepping proce-

materials are particularly challenging and prone to vedyres producing weak solutions of the differential varia-

Proceedings of 2011 NSF Engineering Research and Innovatior(@ocg, Atlanta, Georgia Grant #0700191

Figure 2: Chrono::Engine simulation of a tracked vehicle on a
I _ granular soil. The GPU was used for both dynamics and catlisio

)))) o detection between tracks, sprockets, and pebbles [2].
Figure 1: Chrono::Engine [1] simulation of a complex, rigid tiul
body mechanism with contacts and joints.

tional inequality (DVI) problem, which describes the timélustrates how this problem can be solved in parallel by
evolution of rigid bodies with impact, contact, frictiongxploiting the parallel computational resources avadabl
and bilateral constraints. Early numerical methods basadNVIDIA's GPU cards.

on DVI formulations can be traced back to the early 1980s

and 1990s [6, 7, 8]. Recent approaches based on time-

stepping schemes have included both acceleration-foece Core Method The formulation of the equations
linear complementarity problem (LCP) approaches [9, 16] motion, that is, the equations that govern the time
and velocity-impulse, LCP-based time-stepping methoegolution of a multibody system, is based on the so-
[11, 12, 13]. The LCPs, obtained as a result of the introalled absolute, or Cartesian, representation of the at-
duction of inequalities accounting for nonpenetration-cotitude of each rigid body in the system. The state of
ditions in time-stepping schemes, coupled with a polyhtite system is denoted by the generalized positipas
dral approximation of the friction cone, must be solved @tLgL ""r-'l;b’sgb]-r c R™> and their time derivatives
each time step in order to determine the system state 08[2:- [fI»éIv~~-7fIbvéIb]T € R™. wheren, is the num-
flguratlon as_well as the Lagrange mL_JItlplle_rs FePreseiliar of bodiesy is the absolute position of the center of
ing the reaction forces [7, 11]. I.f 'Fhe S|mulat|on_enta|ls Rass of thejth body, and the quaternions (Euler param-
large number of cc_>ntacts and rigid t?°d'es' as is the C%?Srs)a,— are used to represent rotation and to avoid sin-
fqr granular materials, the comp'uta}t!onal burden of Cl;i‘llarities. Instead of using quaternion derivativesy;jrit
sical LCP solvers can become significant. Indeed, a wgll-p oo advantageous to work with angular velocities ex-

k?own CIESS oflnumkencal m;c_hods for I.‘CP.S baseﬁm; pressed in the local (body-attached) reference frames; in
plex methodsalso known asdirect or pivoting methods ther words, the method described will use the vector of

[14], may exhibit exponential worst-case complexity [15 eneralized velocitieg — H CBI T oar]T c R6M

o . I _ s Wy Py, Wy | € .
Moreover, the_three dimensional Qoulomb friction ca ote that the generalized velocity can be easily obtained
leads to a nonlinear comple.men.tanty problem (NCP). T gq — L(q)v, whereL is a linear mapping that transforms
use of a polyhedral approximation to transform the NC achéy into the corresponding quaternion derivatiye

into an ij:P_int_rf(_)duc:es unwanted r’c]mis_otropfy ri]n fricti(;% means of the linear algebra formuia— %GT(q)(TJi,
cones and significantly augments the size of the numefi, 2, 4 matrix G(q) as defined in [18]. We denote

cal problem [11, 12]. by fA(t,q,v) the set of applied, or external, generalized
forces.

In order to circumvent the limitations imposed by the use

of classical LCP solvers and the limited accuracy associ-

ated with polyhedral approximations of the friction con.1. Bilateral constraints Bilateral constraints repre-

a parallel fixed-point iteration method with projection osent kinematic pairs, for example spherical, prismatic or

a convex set has been developed [16]. The methodésolute joints, and can be expressed as algebraic equa-

based on a time-stepping formulation that solves at dions constraining the relative position of two bodies. As-

ery step a cone-constrained quadratic optimization prataiming a seB of constraints is present in the system, they

lem [17]. The time-stepping scheme has been provedéad to the scalar equatiod4(q,t) =0, i€ 8. Assum-

converge in a measure differential inclusion sense to ting smoothness of constraint manifol&;(q,t) can be

solution of the original continuous-time DVI. This papedifferentiated to obtain the JacobiaW; = [0W;/aq)".

Proceedings of 2011 NSF Engineering Research and Innovatior@ocg, Atlanta, Georgia Grant #0700191

The notatiordW] = OqW] L (q) will be used in what fol- tial variational inequality [16]:

lows. .
q = Lav
Mv = f(t,q,v)+ ¥ VipOWi+
1€B
"‘,Z (/\h,nDi,n‘f'/\h,uDLu +/%,WDi,W)
€4
ies : W,t)=0

2.2. Contacts with friction Given a large number i€4 © ¥in>0 1 ®(q)>0, and
of rigid bodies with different shapes, modern collision- (Yiu;Yiw) = argmin v (Vi.uDiu+ViwDiw).-
detection algorithms are able to find efficiently a set of Hiin> /Yoyt
contact points, that is, points wheregap function®d(q) 2

can be defined for each pair of near-enough shape fea- . _ _
tures. Where defined, such a gap function must sati%@e tangent space generatol = [Din, Diu, Diw] €

nb><3 . . . :
the nonpenetration conditio®(q) > 0 for all contact . are sparse and are defined given a pair of contact
points ing bodiesA andB as

T T AL&
- - | DiT _ [0 A-ri’p Ai, AASN,A 0 . (3)
When a contact is active, that is®;(q) = 0, a normal 0 ... Ap —ApAsse 0 ..,

force and a tangential friction force act on each of the tWghere, using the notation in Fig. B. is the orientation
bodies at the contact point. In terms of notatiarwill de- matrix associated with bodg, Aip = [ni,ui,wi] is the
note the set of all active contacts for a given configurati@qg®=3 matrix of the local coordinates of thigh contact, the

q of the system at timg. In fact, 2(q,€) includes even yectorss 5 ands g are the contact point positions in body
potential contacts between bodies that arg atithin a gordinates. A tild& over a vectox € R3 represents the

distancee of each other and might collide during the timgyew symmetric matrix associated with the outer product
step fromt; to tj,1. If no collision occurs, the algorithm of two vectors [18].

will lead to zero normal/tangential forces for inactive-col

lisions that were conservatively added46q,€).

3. The time-stepping scheme Given a positiong("

. - _and velocityv(!) at the time step!!), the numerical so-
We use the classical Coulomb friction model to def'qﬁtion is found at the new time Steﬁﬂ) —t0 4 h by

these forces [12]. If the contact is not active, that igying the following optimization problem with equilib-
®i(q) > 0, no contact or friction forces exist. This iMyj,m constraints [19]:

plies that the mathematical description of the model leads
to a complementarity problem [11]. Consider two bodied! (V
A andB in contact, as shown in Fig. 3. Lat be the nor-

mal at the contact pointing toward the exterior of the body

(41 vy = hie0) g0 vD) 4+ 3 yipOW; +

€8

+Yica (WnDi,n+W,uDi,u+WwDi,w)» (4)

of lower index, which by convention is considered to be 1€ 3: FWiEO) +oWvii L B —0 (5)
bodyA. Letu; andw; be two vectors in the contact plane ¢ 4 : 0< tai(qM)+ DI v+ Lyl >0, (6)
such thaty, u;,w; € R® are mutually orthonormal vectors. B . (141) T _ _

The frictional contact force is impressed on the system b(%”’w"”) = argmin VI (yuDiu - yiwDiw) (7)
means of multiplier§; , > 0, Vi u, andy, w, which lead to B¥io= Mt

the normal component of the foréen = Vi nni and the g+ = g +hL (gD, (8)

ngential component of the for = i+ ViwWi. .
tangential component of the Torég r = ¥iuli + YiwWi Here, ys represents the constraint impulse of a contact
The Coulomb model is expressed by using the maximum o s N 1 0
T o constraint; that isys = hys, for s= n,u,w. The z®;(q"")
dissipation principle: . ! LT o
term achieves constraint stabilization; its effect is dis-

cussed in [20]. Similarly, the ter®;(qV) achieves

ViwYw) = argmin - v (Giuli +Yawi). (1) stabilization for bilgteral constraints. _The sghe_me con-
Roao<utin verges to the solution of a measure differential inclusion
Lu T fiw= S

[17] when the step size — O.

The proposed approach casts the problem as a monotone
optimization problem through a relaxation over the com-
plementarity constraints, replacing Eq. (6) with

2.3. The complete model The time evolution of the i € 4 :0< & (q") + DInV('H).—
dynamical system is governed by the following differen- /(v Di y)2+ (VT Diw)2 L v}, > 0.

Proceedings of 2011 NSF Engineering Research and Innovatior@ocg, Atlanta, Georgia Grant #0700191

_i-th contact

z

Figure 3: Contact between two bodied,B € {1,2,...,np}

The solution of the modified time-stepping scheme wiNote that the superscrigt + 1) was omitted. Interested
approach the solution of the same measure differentiehders are referred to [16] for a proof of the convergence
inclusion forh — 0 as the original scheme [17], yet, irof this method.

some situations, for large p, or relative velocity(+1):

i.e., when not in an asymptotic regime, this relaxation

can introduce motion oscillations. It was shown in [16}. Algorithms, Implementations, and Evaluations
that the modified scheme is a cone complementarity prdb-detailed analysis of the computational bottlenecks in
lem (CCP), which can be solved efficiently by an iterdhe proposed multibody dynamics analysis method reveals
tive numerical method that relies on projected contractitikat the CCP solution and the prerequisite collision detec-
maps. Omitting for brevity some of the details discuss&@n represent, in this order, the most compute-intensive
in [16, 21], we note that the algorithm makes use of tiiasks of the numerical solution at each integration (sim-

following vectors: ulation) time step. This section concentrates on two ap-
proaches that expose a level of fine-grained parallelism
k = MvO4nf® gb vy (9) that allows an efficient implementation of these two tasks
T on the GPU.
b = {}o@").00} ica, (0
b = twiEn+% ies. (11) 44 p : :
.1. Parallel multibody dynamics GPU solver

The solution, in terms of dual variables of the CCP (the

multipliers), is obtained by iterating the following con-
traction maps until convergence [19]: Buffers for data structures The data structures on the

GPU are implemented as large arrapsfferg to match
viea - yir+1 =Ty [yir —wn; (DiTVr +bi)] (12) the exec_ution model associated with NVIDIA's CUDA.
Four main buffers are used: the contacts buffer, the con-
straints buffer, the reduction buffer, and the bodies buffe
) _) The data structure for the contacts has been mapped into
At each iteratiorr, before repeating (12) and (13), als@q|ymns of four floats, as shown in Fig. 4. Each con-
the primal variables (the velocities) are updated as ¢4t will reference its two touching bodies through the two
pointersBa andBg, in the fourth and seventh rows of the
vVl m-L (Z DAL+ S Dwzy;“HZ) . (14) contact data structure. There is no need to store the entire
zcAa

vies : YT =Ty [y —ooni (OWTV +bi)]. (13)

5 D; matrix for theith contact because it has zero entries

Proceedings of 2011 NSF Engineering Research and Innovatior(@ocg, Atlanta, Georgia Grant #0700191

for most of its part, except for the two 12x3 blocks correnass and inertias rather than their original values, becaus
sponding to the coordinates of the two bodies in contattie operatiorM ~1 DiAyi“rl must be performed multiple

In fact, once the velocities of the two bodieg, wa, and times.

i, wg have been fetched, the produd{ V' in Eq. (12)

can be performed as) o
The parallel algorithm A parallelization of computa-

tions in Eq. (12) and Eq. (13) is easily implemented, by
simply assigning one contact per thread (and, similarly,
one constraint per thread). In fact the results of these com-
putations would not overlap in memory, and two parallel
(16) threads will never need to write in the same memory lo-
cation at the same time. These are the two most numer-
ically intensive steps of the CCP solver, called ©€P
seontact iteration kernednd theCCP constraint iteration
%rnel

DIV' =D/, 7a + D, 0a +Df\i5 + Dl 08 (15)

with the adoption of the following 3x3 matrices:

;VA = _"FA iTP’ D;‘*’A
Di,an Ai.,p7 Di.ws -

AIPAAgé
—AIPABS B.

SinceD],, = —DY,,, there is no need to store both m
trices. Therefore, in each contact data structure onl

matrix D/, is stored, which is then used with oppositgjowever, the sums in Eq. (14) cannot be performed with
signs for each of the two bodies. embarrassingly-parallel implementations: it may happen

The velocity update vectahv;, needed for the sum inthat two or more contacts need to add their velocity up-

Eq. (14) also is sparse: it can be decomposed into snfifes to the same rigid body. A possible approach to

subvectors. Specifically, given the masses and the if@fércome this problem is presented in [22], for a sim-

tia tensors of the two bodiesy,, mg, andJa, Jg, the ilar problem. We adopted an alternative method, with
. Mg, . JBs

termAv; will be computed and stored in four parts as foll9ner generality, based on tiparallel segmented scan
lows: algorithm [23] that operates on an intermediate reduction

buffer (Fig. 7); this method sums the values in the buffer
using a binary-tree approach that keeps the computational
load well balanced among the many thread processors. In
the example of Fig. 7, the first constraint refers to bodies
0 and 1, the second to bodies 0 and 2; multiple updates

Note that those four parts of thi; terms are not storedig pody 0 are then accumulated with parallel segmented
in theith contact data structure or in the data structure @fqyction.

the two referenced bodies (because multiple contacts may

refer the same body, they would overwrite the same memfie following pseudocode shows the sequence of main
ory position). These velocity updates are instead storece@imputational phases at each time step, for the most part
the reduction buffer, which will be used to efficiently perexecuted as parallel kernels on the GPU.

form the summation in Eq. (14). This will be discussed

shortly.

Bip = My Diva B T, Awn = I3 Diwu Ay
Aig =mg'Div Y ™, Awg =g iy T
(17)

Algorithm 1: Time Stepping Using GPU
The constraints buffer, shown in Fig. 5, is based on
a similar concept. Jacobiaris¥; of all scalar con-
straints are stored in a sparse format, each correspond-
ing to four rowsOW; v,, OW; e, OWi v, OWi . There-
fore the product]Wv' in Eq. (13) can be performed
as the scalar valuglWv' = OW], ia + 0¥, 08 + 2.
OW,.fg + O, we. Also, the four parts of the sparse
vectorAv; can be computed and stored as

1. (GPU, see section 4)2Perform collision detec-
tion between bodies, obtaining, possible contact
points within a distancé, as contact positions a,
s .g on the two touching surfaces, and normals

(GPU, body-parallglForce kernel. For each body,

compute forces(t), g, v(V), if any (for example,

gravity). Store these forces and torques iRt@and

Ci.

At = M OW AV L Ao, = IRt0OW; o AY T
A =M D%l n = Do 3. (GPU, contact-parall¢l Contact preprocessing

Arg = mg OW Ay T Awg = Jg OV ey
(18)
Figure 6 shows that each body is represented by a data

structure containing the state (velocity and positiong, th
mass moments of inertia and mass values, and the exter-

nal applied forceF; and torqueCj. Note that to speed 4.

the iteration, it is advantageous to store the inverse of the

kernel. For each contact, given contact normal and
position, compute in place the matrid@§,,, D/,
and DITwB Then compute); and the contact resid-

ualb; = {£®i(q),0,0}".

(GPU, body-parallglCCP force kernel. For each
body |, initialize body velocitiest | * = h m 1F;

Proceedings of 2011 NSF Engineering Research and Innovatior@ocg, Atlanta, Georgia

Grant #0700191

GPU contacts buffer i-th contact data
Thread grid float4 GPU constraints buffer
—_—)
Thread grid
N bin
i T
EE% . Divag by if j-th constraint data
« 3 by EEE float4
J 22
. 4 Bia
T
_ Thread block Thread block 5 Di,a;\] - Thread . D‘HTVA Ba
6 Thread block Thread block - D"".I,R Biol
7 . Bl,B 2 DQ{T%
i T
8 Di,a{; 4 D\H .
Thread o 7 s |bilm | K
. Yo Viu Viv|Hi 6 Ria[Rig|Nia| Mg
i Rl R,Bl Nia (N

Figure 5: Grid of data structures for scalar constraintsGRU

Figure 4: Grid of data structures for frictional contacts, GPU memory.
memory.
GPU reduction buffer Vix Viy Viz|O | Body 0
Constraint floata
GPU bodies buffer ATy Wix%iy%iq
(S Xix Xjy X
u ix iy 27
Thread grid j-th body data 0¥ av
ET T o LT 2] e
float4 Dw:l;g Av l—:' Wiy &id
— by ‘UM / Aw |1 ' Xix Xjy Xjz]
0/1,249-_9_ _: Av =14 Vix Viy V|3 | Body 2
1 Vix Viy Viz R, Constraint Aw 0| TTTT—, i T
! " 10 3 E[“ix%iv%ia
~ Thread ° |Wix%iv%id Ej?" x Y . EJ XixXjy Xiq
Thread block. Thread block 3 X« Xjy Xid D&:{ Aw |0 U0 A2 A2 A4
i EERER TS
4 1Po0A1A2 A3 Dy:’ E S W Jx Jy Jx| My
. FREENEY b1 “‘“‘* R Fix Fiy Fiz
u B -1 CixCiy Gi.
s IFxFiyF 311]o E s g
- C.C 5 E 58 52

Figure 6: Grid of data structures for rigid bodies, in GPU memor Figure 7: The reduction buffer avoids race conditions iraper
updates of the same body state.

andw! Y = hJj_lcj. ity updates that can be fetched from the reduction

] . .
. . buffer, using the indeR;.
5. (GPU, contact-parallel CCP contact iteration

kernel. For each contadt do 9. Repeat from step 5 until convergence or until num-
Y =Ny (Y —ni (DTV +bi)) + (1 - M)y ber of CCP steps reached> r'max.

Note that DiTvr is evaluated with sparse data, us- i . .

ing Eq. (15). Storéy 1 = y/*2 — ¥ in the contact 10. (GPU, body—paralle)l Time integration ke_rnel.
buffer. Compute sparse updates to the velocities of Fgl)il)eachj body, perform time integration as
the two connected bodigsandB, and store them q;
in theR; o andR, g slots of the reduction buffer.

=g +hL (g} v\
11. (Host, serid) If needed, copy body, contact, and
6. (GPU, constraint-parallpICCP constraint itera- constraint data structures from the GPU to host
tion kernel. For each constrainf do memory.
V=N (- (OWIV +bi) + (1 - MY
StoreAy ™ =y "1 — ' in the contact buffer. Com-
pute sparse updates to the velocities of the two con-
nected bodie#\ andB, and store them in thB o 4.2. Parallel collision detection algorithm The 3D
andR; g slots of the reduction buffer. collision detection algorithm implemented performs a
two-level spatial subdivision using axis aligned bounding
boxes. The first partitioning occurs at the CPU level and
yields a relatively small number of largmxes The sec-
ond partitioning of each of these boxes occurs at the GPU
8. (GPU, body-parallglBody velocity updates ker- level leading to a large number of smhlhs The GPU
nel. For eachj body, add the cumulative veloc-3D collision detection, which handles spheres, ellipsoids

7. (GPU, reduction-slot-parallplSegmented reduc-
tion kernel. Sum all theAr;, Awy terms belonging
to the same body, in the reduction buffer.

Proceedings of 2011 NSF Engineering Research and Innovatior@ocg, Atlanta, Georgia Grant #0700191

and planes, occurs in parallel at the bin level. Any other
geometries are represented as a collection of these prim- 4 5
itives using a padding (decomposition) process presented
in detail in [2]. Several kernel calls build on each other
to eventually enable, in a one-thread-per-bin GPU paral- Max_
lel fashion, an exhaustive collision detection process in A
which thread checks for collisions between all the bodies
that happen to intersect the associated birhis requires
0(b?) computational effort, wherl; represents the num-
ber of bodies touching bin The value oty is controlled
by an appropriate selection of the bin size. Figure 8 il- &
lustrates a typical collision detection scenario and isluse B Min
in what follows to outline the nine stages of the proposed
approach.

Stage 1.The process begins by identifying all Object-tOEigur_e_g_: M_inin_1um and maximum bounds of object, based on spatial
bin intersections. As Figure 9 shows, an object (bod%bd'vISIon InFig. 8.

can intersect, or touch, more than one bin; there is Beage 2. Next, we perform an inclusive parallel prefix
limit to how many such intersections take place. The misum onT. The CUDA-based Thrust library implementa-
imum and maximum bounding points of each object afign [24] of the scan algorithm operates ®rto return in
determined and placed in their respective bins. For eX{see Fig. 11) the memory offset information.

ample, Fig. 9 shows that object 4's minimum point lies in

B4 and its maximum point in A5. The entire object musttage 3. An array B (see Fig. 12), is first allocated of
fit between the minimum and maximum points; therefoféz€ equal to the value of the last elemen&irThis value
the number of bins that the object intersects can be detérequal to the total number of object-bin intersections.
mined quickly by counting the number of bins betwedrach element irB is set to a key-value pair of two un-
the two points in each axis and multiplying them. In thigigned integers. The key is the bin id and the value is the
case the number is 4. This number of bins touched 8biect id. As Fig. 18 shows, objects not fully contained

each body is saved into an arrdy see Fig. 10), of size Within the outer edge of the grid are restricted so that their
equal to the number of objects maximum bound cannot be greater than the bounds of the

uniform grid. The per-body parallel process used to deter-
mine the object-bin; i.e., value-key, pairs is essentitiéy
same as in Stage 1 with the caveat that this information is
now saved irB rather than just being countedTn In this
stage, the memory offsets containedSiare used so that
the thread associated with each body can write data to the
correct location irB.

Stage 4.The key-value arraf is sorted in this stage by
key, that is, by bin id. This effectively inverts the body-
to-bin mapping to a bin-to-body mapping by grouping to-
gether all bodies in a given bin for further processing. The
stage draws on the GPU-based radix sort from the Thrust
library [24].

Stage 5.Next, we identify in parallel the start of each bin

in the sorted arra by using the pseudocode in Fig. 16.
The number of threads used to this end is equal to the
number of elements iB; i.e., the number of object-bin
interactions. Each thread reads the current and previous
Figure 8: Two-dimensional example used to introduce the riages of DIN value; if these values differ, then the start of a bin has
the collision detection process. The grid is aligned to dal€artesian been detected. The first thread reads only the first ele-
reference frame. ment and records it as the initial value. The starting posi-

Proceedings of 2011 NSF Engineering Research and Innovatior@ocg, Atlanta, Georgia Grant #0700191

w
B
ul

4 7 11/15 20 ... S

N
UU<-N‘
-
4_.
-

Figure 11: Result of prefix sum operation @n based on spatial sub-
division in Fig. 8. Each entry represents an object’s offseted on the
N number of bins it touches.

Figure 10: ArrayT with N entries, based on spatial subdivision in Fig. 8.

B-array I The Value
1 1 1 1 2 2 2 3 3 3 3 4
B1 B2 Cc1 c2 | A2 ’ A3 B2 | A1 A2 B1 B2 | A4

k The Key

Figure 12: ArrayB, based on spatial subdivision in Fig. 8.

tions for each bin are written into an arr@yof key-value first occurrence of Oxffffffff. Determining this index al-
pairs of size equal to the number of bins in the 3D gritbws memory and thread usage to be allocated accurately
When the start of a bin is found in arr8y the thread and thus having no threads wasted on inactive bins. One
bin id are saved as the key and value, respectively. TR®U thread is assigned in this stage to each active bin to
pair is written to the element i€ indexed by the bin id. perform an exhaustive, brute-force, bin-parallel cadlisi
Note that not all bins are active. Inactive bins (i.e., birdetection for the purpose ahly countingthe collision
touched by zero or one bodies), are set to Oxffffffff, thevents. By carefully selecting the bin size, the number of
largest possible value for an unsigned integer on a 32-bibjects being tested for collisions is expected to be small;
X86 architecture. Figure 14 shows the outcome of thig., on average, in the range of 3 to 4 objects per bin. Af-
stage. ter counting the total number of collisions in its bin, the
TR thread writes that tally into an unsigned integer aiDayf

The Value Al A2 A3 Ad A5 . . .
a | | | size equal to the number of active bins.

Carray LA A 2 N A
Thekey —eOxfff| 1 | 3 6 | 8 10 ..

More involved, the algorithm for counting and subse-
quently computing ellipsoid collision information is de-
scribed in detail in [25]. For spheres, the algorithm checks

Figure 14: ArrayC, based on spatial subdivision in Fig. 8.

for collisions by calculating the distance between the ob-
TheValue —» A2 - | E4 AL | - B .)
sortedCarray § 4 4 4 : 3 jects. Contacts can occur only when the distance between
The Key 1w [as o]~ | o | the spheres’ centers is less than or equal to the sum of their

radii. Because one object could be contained within more
Figure 15: Sorted arra@, based on spatial subdivision in Fig. 8. than one bin, checks were implemented to prevent double
counting. Since the midpoint of a collision volume can be

For each thread index:

If index<number of active Bins: contained only within one bin, only one thread (associated
if index > 0: . with that bin) will register/count a collision event. For-ex
if Current bin number != Previous bin number . . K . .
Bin start = index ample, in order to determine the midpoint of the collision

else if index=0:

Bin start - volume we use the vector from centroid of object 4 to the

centroid of object 7; see Fig. 17. The points where this
Figure 16: Pseudocode: Bin starting index computation. vector intersects each object defines a segment; the loca-

. . tion of the middle of this segment is used to decide the
Stage 6. The arrayC is next radix-sorted [24] by key'unique bin that claims ownership of the contact. If one

Consequently, inactive bins (identified by the Oxiffffie object is completely inside the other, the midpoint of the

tries, represented for brevity as Oxffin Fig. 15) mlgl)atecollision volume is the centroid of the smaller object. Us-
to the end of the array.

ing this process, the number of collisions are counted for
Stage 7. The total number of active bins is determinedach bin and written t®. This stage is outlined in the
next by finding the index in the sorted arr&y of the pseudocode in Fig. 19.

Proceedings of 2011 NSF Engineering Research and Innovatior@ocg, Atlanta, Georgia Grant #0700191

B-array I The Value
3 2 /3 2|57 /4|7 4|7 1]3
AL A2 | A2 A3 A3 A3 A4 A4 A5 | AS Bl Bl

k The Key

Figure 13: Sorted arra, based on spatial subdivision in Fig. 8.

/ 4 Outer Edge

Max

C 7 Min

Figure 18: Max bound is constrained to bin A5.

Figure 17: Center of collision volume. Based on spatial stibdi
sion in Fig. 8.

For each thread index:
If index<last:
For posA=bin start && posA<bin end:
For posB=posA+1 &% posB<bin end: ObjectA=A
centerDist = distance between center of A and B ObjectB=B
rAB =Radius of A plus Radius of B
if centerDist<=rAB:
if centerDist+radius of A)<radius of B):
collision center=bin of object A
if centerDist+radius of B)<radius of A):
collision center=bin of object B
if(current bin=collision center)

D[index]++; Figure 20: Pseudocode: Computing collision data.

Normal=-midpoint/centerDist

Collision point on B(x)= B.x+(B.w/centerDist)*(A.x-B.x)
(repeat for y and z)..

Collision point on A(x)= A.x+(A.w/centerDist)*(B.x-A.x)
(repeat for y and z)..

Figure 19: Pseudocode: Determine number of collisions.

Proceedings of 2011 NSF Engineering Research and Innovatior@ocg, Atlanta, Georgia Grant #0700191

Stage 8.We perform next an inclusive parallel prefix scaifhese results demonstrate that the error in the proposed
operation [24] orD. This returns an arralg whose last algorithm, when compared to the CPU implementation, is
element is the total number of collisions in the uniforrof the order of single precision round-off error. This is
grid, a value that allows an exact amount of memory to baced back to the fact that the CPU-based algorithm per-
allocated in the next stage. forms computations in double precision, while the GPU
Stage 9. The fnlsage o he colision detection algei2%7 U525 Sl precson e, Fordseenar
rithm computes the actual contact information. To thgasnd GPU analyses
end, an array of contact information structufes allo- '
cated with a size equal to the value of the last elemelt inA second set of numerical experiments was carried out
The collision pairs are then found by using the algorithtn gauge the efficiency of the parallel CD algorithm de-
outlined in Stage 7. Instead of simply counting the nurmeloped. The reference used was the same sequential CD
ber of collisions, actual contact informationasmputed implementation from Bullet Physics Engine. The CPU
and writtento its respective place iR; see pseudocode inused in this experiment (relevant for the Bullet implemen-
Fig. 20. tation) was AMD Phenom Il Black X4 940, a quad core
3.0 GHz processor that drew on 16 GB of RAM. The GPU
used was NVIDIAs Tesla C1060. The operating system
5. Final Evaluation The GPU iterative solver and theused was the 64bit version of Windows 7. Two scenar-
GPU collision detection outlined herein have been embéds were considered. The first scenario determined how
ded in our C++ simulation software Chrono::Engine. Weany contacts a single GPU could determine before run-
tested the GPU-based parallel method with benchmaikg out of memory. As Fig. 23 shows, approximately
problems and compared it with the serial implementati@2 million contacts were determined in less than 4 sec-
in terms of efficiency. onds. The second scenario gauged the relative speedup
%%ined with respect to a serial implementation. The first

For the results in Table 1, we simulated densely pack st stopped when dealing with about 6 million contacts
spheres that flow from a silo. The CPU was an Intel Xe N bp 9

2.66 GHz: the GPU was an NVIDIA Tesla C1060. Th see horizontal axis of Fig. 24), when Bullet ran into mem-

simulation time increases linearly with the number of bodY management ISSUES. Wh'l.e providing a s_uff|C|en_t level
f accuracy, the single precision GPU algorithm, tailored

ies in the model. The GPU algorithm is at least one Om%rdeal with sphere-to-sphere contact onlv. led to a rela-
of magnitude faster than the serial algorithm. P P Y

tive speedup of up to 180. We want to emphasize that the
The test of Fig. 21 simulates 1 million rigid bodies inside 880 factor does not reflect a GPU vs. CPU issue. The
tank being shaken horizontally. This represents to date Bwlet engine was the solution used prior to using the pro-

largest multibody dynamics problem solved on one GRidsed method. It was a much more versatile collision de-

card. The track system shown in Fig. 2 was exercised t@ction engine, which in retrospect was unnecessarily used
granular terrain that was made up of more than 480,0@0double precision.

bodies. Collision Time Vs. Number of Contacts
6.0 1

6. Validation against and comparison with state-of- 5.0 ¢ /6

the-art sequential collision detection A first set of ex- =40 1 &

periments was carried out to validate the implementatior 'y a o + /

of the algorithm using various collections of spheres that E 00 & 4

display a wide spectrum of collision scenarios: disjoint B /”'

spheres, spheres fully containing other spheres, sphere 1042

barely touching each other, and spheres that are in cor D'Ooiol T e e T

tact but not full containment. The first column of Table 2

reports the number of objects for five scenarios. For eact.

gcenarlo the error b.etween the reference algorithm and theFigure 22: Collision time as the number of contacts increases.
implemented algorithm is reported for the total number

of contacts identified, the average error and standard de-

viation of the contact distance, contact unit normal, adl. Scaling analysis Our second set of experiments
point of contact. The reference algorithm used for valivas designed to illustrate the scaling of the parallel nu-
dation was the sequential (nonparallel) collision detectimerical solution and collision detection. The vehicle used
implementation available in the open source, state-of-thie this end was the simulation of a cylindrical tank that had
art Bullet Physics Engine [26]. a constant height with the radius varying with the number

Contacts [Millions]

Proceedings of 2011 NSF Engineering Research and Innovatior(@ocg, Atlanta, Georgia Grant #0700191

CPU GPU
Number of Bodies CCP CCP Speedup CCP Speedup CD
[s] [s]

16,000 7.11 057 12.59 4.67
32,000 16.01 1.00 16.07 6.14
64,000 34.60 1.97 17.58 10.35
128,000 76.82 4.55 16.90 21.71

Table 1: Benchmark test of the GPU CCP solver and GPU collidaiaction.

Figure 21: Light ball floating on 1 million rigid bodies movingoaind in a tank while interacting through friction and cantta

Table 2: Errors computed by taking the Euclidean norm of tffergince between the collision data from Bullet and theisiolh detection algorithm
discussed. AE stands for Average Error. SD stands for Steraieviation

Spheres Contact Dist. | Contact Normal| Contact Point
Contacts Error [m] Error [m] Error [m]
[x10°] AE SD AE SD AE SD
[x1077] | [x1074 | [x10°%9 [x1077] [x10°8] | [x1079
1 462,108 | 1.46 | 2.48 | 0.82 2.21 2.73 | 2.98
2 1,015,556| 0.74 | 291 | 1.91 2.15 2.37 | 3.35
3 1,379,397 1.69 | 3.52 | 2.75 2.26 | 3.58 | 4.09
4 1,530,309| 5.49 | 4.14 | 2.33 2.24 1.94 | 4.78
5 1,995,548 6.35 | 4.38 | 1.09 2.23 | 3.10 | 5.09

Proceedings of 2011 NSF Engineering Research and Innovatior(@ocg, Atlanta, Georgia Grant #0700191

REFERENCES REFERENCES

of spheres added to the tank. Specifically, the numberAxfknowledgments We would like to thank Richard Tonge
spheres in the tank was increased with each simulatfonthe substantial feedback and assistance he provided in gen-
without increasing the fill-in depth of the tank. Insteaayrating this manuscript. Financial support for D. Negrut was
the radius of the cylinder was increased for each simufaevided in part by the National Science Foundation Awards
tion based on the number of spheres and their packing fas4MI-0700191 and CMMI-0840442. Financial support for
tor. Each test was run using an NVIDIA Tesla C1060 un#l. Tasora was provided in part by the Italian Ministry of Edu-
the number of collisions and the compute time per solcation under the PRIN grant 2007Z7K4ZB. Mihai Anitescu was
tion time step reached steady state. The results presestegborted by the Office of Advanced Scientific Computing Re-
in Table 3 and graphed in Fig. 22 indicate that the ovetearch, Office of Science, U.S. Department of Energy, under
all algorithm scales linearly. Furthermore, the resultgsuContract DE-AC02-06CH11357. We thank NVIDIA and Mi-
gest that the bulk of the computation at each time step wassoft for sponsoring our research programs in the area of high-
taken by the GPU dynamics solver, with a small amount pérformance computing.

time taken up by the collision detection. These collision

detection times are longer than the raw times presented

earlier due to the pre- and post-processing required by the

physics engine as it organizes data on the GPU for L}%@ferences

between the solver and collision detection.

o Single Tesla C1060 Configuration [1] Tasora A. Chrono::Engine, An Open
: . Source Physics—Based Dynamics Sim-
o = ulation Engine. Available online at
Ez.o : www.deltaknowledge.com/chronoengine, 2006.
(= £
"o // [2] T. Heyn. Simulation of Tracked Vehicles on
O'OO'D 100 200 200 Granular Terrain Leveraging GPU Comput-
Contacts [Milions] ing. M.S. thesis, Department of Mechanical
Figure 23: Collision time vs. contacts detected. This grdpws that Englneerlng_, University of WISCOHSIH—Mad!S_OH,
when the algorithm is executed on a single GPU it scalesrinea http://sbel.wisc.edu/documents/TobyHeynThésial.pdf,
2009.
GPU: NVIDIA Tesla C1060 versus
CPU: AMD Phenom Il Black X4 940 [3] J. Madsen, N. Pechdimaljian, and D. Negrut. Penalty
Qfgg versus complementarity-based frictional contact of
8120 £ >~ rigid bodies: A CPU time comparison. Technical
a 80 . Report TR-2007-06, Simulation-Based Engineering
> 40 f, Lab, University of Wisconsin, Madison, 2007.
D [, n L L n L L L L
00 Zontacts Milions] 8.0 [4] PhysX. NVIDIA PhysX for De-

‘ _ _ velopers. Available online at
Figure 24: Overall speedup when comparing the CPU algoriththe http://developer.nvidia.com/object/physx.html
GPU algorithm. The maximum speedup achieved was approximately '

180 times. 2010.
[5] Peng Song, Jong-Shi Pang, and Vijay Kumar.

7. Future Directions The GPU dynamics engine pro- A sémi-implicit time-stepping model for frictional
posed is more than one order of magnitude faster than COMPpliant contact problemsinternational Journal
a previously developed sequential implementation. The ©f Numerical Methods in Engineering0(13):267—
largest GPU simulation run to date had approximately 1.1 279, 2004,

million bodies. Two barriers prevented the simulation ofg
larger systems. First, we exhausted the GPU memory;
second, we noticed a convergence stalling in the Gauss- piaro” and F. Macieri, editorsUnilateral Prob-
Jacobi algorithm for CCP problems with more than 15 |os in Structural Analysispages 173-221, New
million variables. In order to address these aspects we are York, 1983. CISM Courses and Lectures no. 288,
developing a distributed computing framework that lever-
ages multiple GPUs, and we are investigating a minimal
residual type Krylov method for the CCP solution. For[7] P. Lotstedt. Mechanical systems of rigid bodies sub-
the latter, GPU sparse preconditioning remains an open ject to unilateral constraintsSIAM Journal of Ap-
question. plied Mathematics42(2):281-296, 1982.

Jean J. Moreau. Standard inelastic shocks and
the dynamics of unilateral constraints. In G. Del

Springer—\Verlag.

Proceedings of 2011 NSF Engineering Research and Innovatior(@ocg, Atlanta, Georgia Grant #0700191

REFERENCES

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Table 3: Total time taken per time step at steady state and thbeernof contacts associated with it.

Objects | Total Time

GPU Collision

[x10°] [sec] Detection [sec] GPU Solver| - Contacts
0.2 12.1190 1.0758 10.5881 718,377
0.4 23.2806 1.9746 20.4606 | 1,403,784
0.6 35.0433 2.9785 30.7971 | 2,124,639
0.8 46.9516 4.0234 41.2297 | 2,838,832
1.0 58.1518 4.9473 51.1686 | 3,548,594

M. D. P. Monteiro Marques. Differential Inclu- [18]
sions in Nonsmooth Mechanical Problems: Shocks
and Dry Friction, volume 9 ofProgress in Nonlin-
ear Differential Equations and Their Applications

Birkhauser Verlag, Basel, 1993. [19]

David Baraff. Issues in computing contact forces for
non-penetrating rigid bodieglgorithmica 10:292—

352, 1993. [20]

Jong-Shi Pang and Jeffrey C. Trinkle. Comple-
mentarity formulations and existence of solutions
of dynamic multi-rigid-body contact problems with
Coulomb friction. Mathematical Programming

73(2):199-226, 1996. 21]

David E. Stewart and Jeffrey C. Trinkle. An implicit
time-stepping scheme for rigid-body dynamics with
inelastic collisions and Coulomb frictioninterna-
tional Journal for Numerical Methods in Engineerpz]
ing, 39:2673—-2691, 1996.

Mihai Anitescu and Florian A. Potra. Formulatipog
ing dynamic multi-rigid-body contact problems with
friction as solvable linear complementarity prob-
lems. Nonlinear Dynamics14:231-247, 1997.

David E. Stewart. Rigid-body dynamics with fric-
tion and impactSIAM Review42(1):3-39, 2000. [24]

Richard W. Cottle and George B. Dantzig. Com-
plementary pivot theory of mathematical program-
ming. Linear Algebra and Its Applicationd:103- [25]
125, 1968.

David Baraff. Fast contact force computation for
nonpenetrating rigid bodies. @omputer Graphics
(Proceedings of SIGGRAPH)ages 23—-34, 1994.

M. Anitescu and A. Tasora. An iterative approach
for cone complementarity problems for nonsmooth
dynamics. Computational Optimization and Appli-

cations 47(2):207-235, 2010. [26]

Mihai Anitescu. Optimization-based simulation of
nonsmooth rigid multibody dynamicaMathemati-
cal Programming 105(1):113-143, 2006.

E. J. Haug. Computer-Aided Kinematics and Dy-
namics of Mechanical Systems VolumePrentice-
Hall, Englewood Cliffs, New Jersey, 1989.

A. Tasora. A Fast NCP Solver for Large Rigid-Body
Problems with Contacts. In C.L. Bottasso, editor,
Multibody Dynamics: Computational Methods and
Applications pages 45-55. Springer, 2008.

Mihai Anitescu and Gary D. Hart. A constraint-
stabilized time-stepping approach for rigid multi-
body dynamics with joints, contact and frictiom-
ternational Journal for Numerical Methods in Engi-
neering 60(14):2335-2371, 2004.

A. Tasora, D. Negrut, and M. Anitescu. Large-scale
parallel multi-body dynamics with frictional contact
on the graphical processing unidournal of Multi-
body Dynamics222(4):315-326, 2008.

T. Harada. Real-time rigid body simulation on
GPUs.GPU Gems3:611-632, 2007.

] S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens.

Scan primitives for GPU computing. IRroceed-
ings of the 22nd ACM SIGGRAPH/EUROGRAPH-
ICS symposium on Graphics hardwaage 106.
Eurographics Association, 2007.

J. Hoberock and N. Bell. Thrust: A Par-
allel Template Library. Available online at
http://code.google.com/p/thrust/, 2009.

A. Pazouki, H. Mazhar, and D. Negrut. Paral-
lel ellipsoid collision detection with application in
contact dynamics-DETC2010-29073. In Shuichi
Fukuda and John G. Michopoulos, editdPspceed-
ings to the 30th Computers and Information in En-
gineering ConferenceASME International Design
Engineering Technical Conferences (IDETC) and
Computers and Information in Engineering Confer-
ence (CIE), 2010.

Physics ~ Simulation Forum. Bullet
Physics Library. Available online at
http://www.bulletphysics.com/Bullet/wordpress/btille
2008.

Proceedings of 2011 NSF Engineering Research and Innovatior(@ocg, Atlanta, Georgia

Grant #0700191

