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derived from the Lagrange-d’Alembert principle. We
define a new nonholonomically constrained discrete
Lagrange-d’Alembert principle based on a discrete
Lagrange-d’Alembert principle for forced Lagrangian
systems. Nonholonomic constraints are considered
as first integrals of the underlying forced Lagrangian
system of ordinary differential equations. A large
class of specialized partitioned additive Runge-Kutta
(SPARK) methods for index 2 DAEs satisfies the new
discrete principle. Symmetric Lagrange-d’Alembert
SPARK integrators of any order can be obtained
based for example on Gauss and Lobatto coefficients
as already proposed for more general index 2 DAEs.
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1. Introduction: In this paper we consider the nu-
merical solution of Lagrangian systems with ideal
nonholonomic constraints. Nonholonomic systems
in mechanics have a long and intriguing history
[1, 2, 3]. Nonholonomic constraints involve velocities
and are nonintegrable, i.e., they cannot be derived
from holonomic constraints. The dynamics of non-
holonomic systems has been the subject of a contro-
versy between Lagrange-d’Alembert mechanics and
vakonomic (variational nonholonomic) mechanics. It
is nowadays accepted that vakonomic mechanics does
not lead to the correct equations of motion of physi-
cal systems, but that Lagrange-d’Alembert mechan-
ics generally does [2, 4, 3]. In this paper we consider

methods which mimic faithfully at the discrete level
the integral Lagrange-d’Alembert principle. Such
methods are called Lagrange-d’Alembert (LDA) inte-
grators. They fall under the framework of geometric
integration methods and they generalize variational
integrators [5, 6].

Geometric integration has attracted quite a lot of
interest in recent years, see for example the book
[7] and the survey paper [8]. Geometric integration
methods can be classified as extrinsic or intrinsic. In-
trinsic methods are coordinate-free methods, for ex-
ample Lie group methods are defined intrinsically in
terms of the exponential map or some approximation
to it on the corresponding Lie algebra to advance the
numerical solution in time. In this paper we will ex-
clusively consider extrinsic methods. Extrinsic meth-
ods consider an embedding of the manifold in R

n and
make use of coordinates. For unconstrained Hamil-
tonian and Lagrangian systems important classes of
geometric integrators are symplectic/Poisson integra-
tors [7, 9, 10, 11] and variational integrators which
are based on a discrete version of Hamilton’s prin-
ciple [5, 6]. For unconstrained Lagrangian systems
with forcing an important class of geometric inte-
grators are Lagrange-d’Alembert (LDA) integrators
which are based on a discrete version of the Lagrange-
d’Alembert principle [5, 6].

For ideal nonholonomic constraints the equations
of motion do not derive from a standard varia-
tional principle, but for example from the Lagrange-
d’Alembert principle [12, 13, 2, 14, 3] which is not a
variational principle, but a differential principle. For
Lagrangian systems and ideal scleronomic (i.e., time-
independent) linear nonholonomic constraints in the
velocities the Lagrange-d’Alembert principle is equiv-
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alent to a skew critical problem which is also not truly
a variational principle [12, 15, 16, 17]. Methods based
on a similar discrete skew critical problem in Q×Q
where Q is the configuration space have been first in-
troduced by Cortés in [18, 15] and have also been
called Lagrange-d’Alembert (LDA) integrators. A
few low order LDA integrators of this type have been
developed in [19, 20, 17]. We believe that the discrete
constrained Lagrange-d’Alembert principle of Cortés
[18, 15] is not sufficiently general to include many
methods of interest. Tentatives to extend this prin-
ciple have been made by Cuell and Patrick. For La-
grangian systems with ideal scleronomic linear non-
holonomic constraints these authors have shown the
Lagrange-d’Alembert principle to be equivalent to a
skew critical problem in the kinematic state space
TQ [16, 21, 22]. This result has been extended to
Lagrangian systems with ideal nonlinear scleronomic
nonholonomic constraints [23]. For Lagrangian sys-
tems with ideal linear scleronomic nonholonomic con-
straints, they have proposed discrete skew critical
methods defined directly in the kinematic state space
TQ [16, 22]. We also mention the energy-preserving
methods for Lagrangian systems with ideal linear
scleronomic nonholonomic constraints considered by
Betsch in [24].

In this paper we take a radically different and
simpler approach. We quote from McLachlan and
Perlmutter in [17]: much work remains to be done
to clarify the nature of discrete nonholonomic me-
chanics and to pinpoint the “correct” discrete analog
of the Lagrange-d’Alembert principle. The nonholo-
nomically constrained discrete Lagrange-d’Alembert
principle that we consider in this paper is certainly
correct and sufficiently general to include many meth-
ods of interest. We define a general constrained dis-
crete Lagrange-d’Alembert principle directly inQ×Q
based on the discrete Lagrange-d’Alembert princi-
ple for forced Lagrangian systems proposed in [5],
see [6, Section 3.2]. The principle that we propose
does not make explicit use of any Lagrange multi-
plier in its formulation contrary to [18, 15, 16, 22,
19, 20, 17]. This is consistent with the fact that
the Lagrange-d’Alembert principle for nonholonomic
systems is not a variational principle. We remark
that nonholonomic constraints can be mathemati-

cally realized with forcing as a forced Lagrangian
system. The nonholonomically constrained discrete
Lagrange-d’Alembert principle that we propose is
therefore fully consistent with the unconstrained dis-
crete Lagrange-d’Alembert principle for forced La-
grangian systems. It generalizes the one proposed by
Cortés in [18, 15] which appears restrictive. It is an
extension in a direction awaited by McLachlan and
Perlmutter in [17, Section 8]. This extension was in
fact partly suggested without details by Marsden and
West in [6, Section 5.3.7]. A large class of specialized
partitioned additive Runge-Kutta (SPARK) methods
for index 2 DAEs is shown to satisfy the new discrete
principle. Symmetric Lagrange-d’Alembert SPARK
integrators of any order can be obtained based for
example on Gauss and Lobatto coefficients as al-
ready proposed for more general index 2 DAEs in
[25, 26, 27]. An extension of the results of this paper
to submanifolds Q ⊂ R

n and holonomic constraints
will be the subject of a forthcoming paper [28].

The paper is organized as follows. In section 2 the
system of DAEs of Lagrangian systems with ideal
nonholonomic constraints is given. The underly-
ing forced Lagrangian system is also obtained. In
section 3 the Lagrange-d’Alembert principle is dis-
cussed. A forced discrete Lagrange-d’Alembert prin-
ciple for Lagrangian systems with nonholonomic con-
straints is proposed in section 4. In section 5 the
exact discrete forcing terms for Lagrangian systems
with nonholonomic constraints are derived. In sec-
tion 6 the main Theorem 1 gives sufficient condi-
tions for SPARK methods to satisfy the forced dis-
crete Lagrange-d’Alembert principle for Lagrangian
systems with nonholonomic constraints. Several ex-
amples of Lagrange-d’Alembert SPARK integrators
are given in section 7. In section 8 some numerical
experiments are given to illustrate the favorable en-
ergy preservation property of Lagrange-d’Alembert
SPARK integrators. Finally, a short conclusion is
given in section 9.
2. Lagrangian Systems with Ideal Nonholo-

nomic Constraints: For simplicity in this paper
we suppose that the configuration space Q is the
linear space Q = R

n. The constrained Lagrangian
system with Lagrangian L : R × TQ −→ R (where
TQ ∼= R

n × R
n) and ideal nonholonomic constraints
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k : R × TQ −→ R
m (m < n) is given by the La-

grange equations of the second kind

d

dt
q = v, (1a)

d

dt
∇vL(t, q, v) = ∇qL(t, q, v) −K(t, q, v)Tψ, (1b)

0 = k(t, q, v), (1c)

where
K(t, q, v) := kv(t, q, v). (1d)

In most applications the nonholonomic constraints
(1c) are affine in the generalized velocities v, i.e.,

0 = k(t, q, v) = K(t, q)v + b(t, q). (2)

Moreover, such ideal affine nonholonomic constraints
(2) are oftentimes just linear in v, i.e., b(t, q) ≡ 0.
The assumption (2) will actually not be needed in
this paper.
2.1. The Underlying Forced Lagrangian Sys-

tem: Expanding the left-hand side of (1b) we get

∇2
vvL(t, q, v)

d

dt
v +K(t, q, v)Tψ = (3a)

−∇2
tvL(t, q, v) −∇2

qvL(t, q, v)v + ∇qL(t, q, v).

From a computational point of view, see Section 6,
it is in fact advantageous to consider directly the
formulation (1b) instead of (3a) since (3a) requires
the calculation of the extra terms ∇2

tvL(t, q, v) and
∇2
qvL(q, v)v, the latter corresponding to Coriolis

forces. Differentiating (1c) once with respect to t
and using (1a) we obtain

K(t, q, v)
d

dt
v = −kt(t, q, v) − kq(t, q, v)v. (3b)

In this paper we assume that the matrix
(

∇2
vvL(t, q, v) K(t, q, v)T

K(t, q, v) O

)
is nonsingular. (4)

For example, for ideal nonholonomic constraints one
can assume that K(t, q, v) is of full row rank m and
that the Lagrangian L is regular, i.e., the Hessian
matrix

∇2
vvL(t, q, v) is nonsingular, (5)

∇2
vvL(t, q, v) is generally assumed to be positive def-

inite. Under the assumption (4), from (3) we can
express d

dt
v and ψ as explicit functions of (t, q, v).

Hence, under the assumption (4) the equations (1)
are implicit differential-algebraic equations (DAEs)
of index 2 [26]. For consistent initial values (q0, v0)
at t0, i.e., such that

0 = k(t0, q0, v0),

assuming (4) and sufficient smoothness of L and
k, we have existence and uniqueness of a solution
(q(t), v(t), ψ(t)) to (1). Expressing ψ as an implicit
function of (t, q, v), i.e., ψ = Ψ(t, q, v), we obtain from
(1ab) the underlying forced Lagrangian system

d

dt
q = v, (6a)

d

dt
∇vL(t, q, v) = ∇qL(t, q, v) + fL(t, q, v), (6b)

where

fL(t, q, v) := −K(t, q, v)TΨ(t, q, v) (7)

can be interpreted as a forcing term. This corre-
sponds to a mathematical realization of the nonholo-
nomic constraints (1c). By construction the func-
tions k(t, q, v) of (1c) are first integrals of the forced
Lagrangian system (6)-(7) since d

dt
k(t, q, v) ≡ 0 by

definition of Ψ(t, q, v).
2.2. Energy: The energy of the system (1) is defined
as

E(t, q, v) := Lv(t, q, v)v − L(t, q, v). (8)

We have

d

dt
E(t, q, v) =

(
d

dt
Lv(t, q, v)

)
v + Lv(t, q, v)v̇

−Lt(t, q, v) − Lq(t, q, v)v

−Lv(t, q, v)v̇
= Lq(t, q, v)v − ψTK(t, q, v)v

−Lt(t, q, v) − Lq(t, q, v)v

= −ψTK(t, q, v)v − Lt(t, q, v).

For ideal scleronomic (time-independent) nonholo-
nomic constraints linear in v 0 = K(q)v and time-
independent Lagrangians L(t, q, v) = L(q, v) the en-
ergy is conserved since K(q)v = 0 and Lt(q, v) ≡ 0.
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3. The Lagrange-d’Alembert Principle: For
ideal affine nonholonomic constraints (2) the equa-
tions (1) can be derived from the Lagrange-
d’Alembert principle [12, 13, 2, 14, 3] which is a differ-
ential principle. The Lagrange-d’Alembert principle
states that the virtual work vanishes

δ∗W :=

(
− d

dt
Lv(t, q, q̇) + Lq(t, q, q̇)

)
δ∗q = 0 (9a)

for all reversible (i.e., with q in the interior of the
configuration space Q) virtual displacements δ∗q sat-
isfying

K(t, q)δ∗q = 0. (9b)

Notice nevertheless that energy can still be created
or dissipated along a trajectory of (1), see subsec-
tion 2.2 above. The definition of ideal nonholonomic
constraints is equivalent to the Lagrange-d’Alembert
principle (9ab) with (9b) for ideal nonlinear nonholo-
nomic constraints simply replaced by

K(t, q, q̇)δ∗q = 0. (9c)

This is the Maurer-Appell-Chetaev-Johnsen-Hamel
rule, see e.g. [3, p. 820], usually simply called
Chetaev’s rule. From (9c) we obtain the expression
(1d) in (1b). For ideal nonholonomic constraints a
different equivalent and finite-dimensional variational
principle leading to (1) is Gauss’ principle of least
constraint [14, 3, 29], but it is based on the general-
ized accelerations q̈ and is thus generally seen as an
inferior principle.
3.1. The Lagrange-d’Alembert Principle as a

Skew Critical Problem: For ideal linear sclero-
nomic nonholonomic constraints 0 = K(q)q̇, the
Lagrange-d’Alembert principle is equivalent to a skew
critical problem [12, 15, 16, 21, 22, 17, 23] de-
scribed as follows. Given a Lagrangian L(t, q, q̇) ∈
C0([t0, tN ], TQ) and ideal linear scleronomic nonholo-
nomic constraints 0 = K(q)q̇ we form the action in-
tegral between q0 at t0 and qN at tN

A(q) :=

∫ tN

t0

L(t, q(t), q̇(t))dt

which is a functional for q ∈ C1([t0, tN ], Q) satisfying
q(t0) = q0, q(tN ) = qN , and 0 = K(q(t))q̇(t). The

Lagrange-d’Alembert principle is then equivalent to
the skew critical problem

δA(q)(δq) = 0 ∀δq ∈ C1
0([t0, tN ], Q) | K(q)δq ≡ 0

(10)
where δA(q) is the first variation (i.e., the Gâteaux
derivative) of the action. Hamilton’s variational prin-
ciple is not valid in the presence of ideal nonholo-
nomic constraints contrary to ideal holonomic con-
straints. Observe that in (10) we do not have the
seemingly more natural condition

lim
ε→0

1

ε
K(q+εδq)(q̇+εδ̇q) = Kq(q)(q̇, δq)+K(q)δ̇q ≡ 0.

Hamilton’s principle applied to problems with ideal
nonholonomic constraints leads to the generally dif-
ferent vakonomic equations [1, 2, 3] which do not
agree with physical experiments [4]. It is worth men-
tioning that the practical realization of nonholonomic
constraints is a problem in itself which may be quite
difficult [30, 31].
3.2. The Integral Lagrange-d’Alembert Prin-

ciple for Forced Lagrangian Systems and for

Lagrangian Systems with Nonholonomic Con-

straints: For forced Lagrangian systems (6) the
(continuous) integral Lagrange-d’Alembert principle
is

δA(q)(δq) +

∫ tN

t0

fL(t, q(t), q̇(t))T δq(t)dt = 0

∀δq ∈ C1
0([t0, tN ], Q).

For systems with nonholonomic constraints fL is
given by (7) and we can simply add the conditions

0 = k(t, q, q̇).

This principle is simpler and more general than the
skew critical problem of subsection 3.1.
3.3. Nonideal Constraints: The constraints (1c)
are called nonideal when the Lagrange-d’Alembert
principle (9) does not hold. For example, Chetaev’s
rule (9c) may be unsuitable in certain situations, see,
e.g., [30]. For Lagrangian systems with nonideal non-
holonomic constraints (1b) is replaced by

d

dt
∇vL(t, q, v) = ∇qL(t, q, v) −K(t, q, v)Tψ

+N(t, q, v, ψ)
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with Nψ 6≡ 0. For example dry sliding friction
can lead to such formulations, see, e.g., [3, Example
3.2.6]. Even holonomic constraints can be nonideal,
see, e.g., [32, 33]. Notice that the SPARK methods
of Section 6 can deal with systems having nonideal
constraints without any particular difficulty.
4. A Forced Discrete Lagrange-d’Alembert

Principle for Lagrangian Systems with Non-

holonomic Constraints: For Lagrangian systems
with nonholonomic constraints we define in this
section a general constrained discrete Lagrange-
d’Alembert principle directly in Q×Q based on the
discrete Lagrange-d’Alembert principle for forced La-
grangian systems.
4.1. The Forced Discrete Lagrange-

d’Alembert Principle and Euler-Lagrange

Equations: For forced Lagrangian systems (6) the
corresponding forced discrete Lagrange-d’Alembert
principle proposed in [5], see [6, Section 3.2], is

δ

N−1∑

k=0

Ld(tk, qk, tk+1, qk+1)

+

N−1∑

k=0

(f−

d (tk, qk, tk+1, qk+1)
T δqk

+ f+
d (tk, qk, tk+1, qk+1)

T δqk+1) = 0 (11)

for all variations {δqk}Nk=0 with δqk ∈ R
n satisfying

δq0 = 0 = δqN . The discrete Lagrangian Ld(tk, qk,
tk+1, qk+1) (or local discrete action) is an approxi-
mation to the exact discrete Lagrangian (the exact
local action) between tk and tk+1

Ld(tk, qk, tk+1, qk+1) ≈ LEd (tk, qk, tk+1, qk+1)

:=

∫ tk+1

tk

L(t, q(t), q̇(t))dt

where q(t) := q(t, tk, qk, tk+1, qk+1). The discrete
forces f−

d (tk, qk, tk+1, qk+1) and f+
d (tk, qk, tk+1, qk+1)

above are approximation to the exact discrete forces
between tk and tk+1

f−

d (tk, qk, tk+1, qk+1)
T ≈ fE−

d (tk, qk, tk+1, qk+1)
T

:=

∫ tk+1

tk

fL(t, q(t), q̇(t))T ∂qk
q(t)dt, (12a)

f+
d (tk, qk, tk+1, qk+1)

T ≈ fE+
d (tk, qk, tk+1, qk+1)

T

:=

∫ tk+1

tk

fL(t, q(t), q̇(t))T ∂qk+1
q(t)dt. (12b)

The discrete principle (11) is equivalent to the forced
discrete Euler-Lagrange equations

∇4Ld(tk−1, qk−1, tk, qk) (13)

+∇2Ld(tk, qk, tk+1, qk+1)

+f+
d (tk−1, qk−1, tk, qk) + f−

d (tk, qk, tk+1, qk+1) = 0

for k = 1, . . . , N − 1. These equations (13) define a
mapping

Φ :

{
R ×Q× R ×Q −→ R ×Q× R ×Q,

(tk−1, qk−1, tk, qk) 7→ (tk, qk, tk+1, qk+1).

From q(t, tk+1, qk+1, tk, qk) = q(t, tk, qk, tk+1, qk+1)
we have the anti-symmetry properties

LEd (tk+1, qk+1, tk, qk) = −LEd (tk, qk, tk+1, qk+1),

fE+
d (tk+1, qk+1, tk, qk)) = −fE−

d (tk, qk, tk+1, qk+1),

fE−

d (tk+1, qk+1, tk, qk)) = −fE+
d (tk, qk, tk+1, qk+1).

Hence, from these properties we could require

Ld(tk+1, qk+1, tk, qk) = −Ld(tk, qk, tk+1, qk+1),

f+
d (tk+1, qk+1, tk, qk)) = −f−

d (tk, qk, tk+1, qk+1),

f−

d (tk+1, qk+1, tk, qk)) = −f+
d (tk, qk, tk+1, qk+1),

as part of the conditions of the forced discrete
Lagrange-d’Alembert principle (11). This makes
sense from a boundary value problem point of view,
but this is not fully justified from an initial value
problem point of view. For an initial value problem,
we are only interested in integrating in a specific time
t direction and nonsymmetric methods may also be
appropriate when the forced Lagrangian system (6)
has no symmetry or reversibility properties.
4.2. The Nonholonomically Constrained Dis-

crete Lagrange-d’Alembert Principle and

Euler-Lagrange Equations: For Lagrangian sys-
tems with nonholonomic constraints, the integral
Lagrange-d’Alembert principle for Lagrangian sys-
tems with nonholonomic constraints stated in subsec-
tion 3.2 and the forced discrete Lagrange-d’Alembert
principle (11) motivate the following definition:
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Definition 1 For Lagrangian systems with ideal
nonholonomic constraints (1) we define the nonholo-
nomically constrained discrete Lagrange-d’Alembert
principle as

δ
N−1∑

k=0

Ld(tk, qk, tk+1, qk+1) (14a)

+

N−1∑

k=0

(f−

d (tk, qk, tk+1, qk+1)
T δqk

+ f+
d (tk, qk, tk+1, qk+1)

T δqk+1) = 0,

0 = c(tk, qk, tk+1, qk+1) for k = 0, . . . , N − 1, (14b)

for all variations {δqk}Nk=0 satisfying δq0 = 0 = δqN ,
with f−

d and f+
d as in (12), fL as in (7), and

c(tk, qk, tk+1, qk+1) :=

k(tk+1, qk+1, u(tk+1, tk, qk, tk+1, qk+1))

with

u(t, tk, qk, tk+1, qk+1) ≈
d

dt
q(t, tk, qk, tk+1, qk+1).

We assume that c(t, q, t, q) = 0 ∀t ∈ R ∀q ∈ Q.

The nonholonomically constrained discrete
Lagrange-d’Alembert principle of Definition 1 is
equivalent to the nonholonomically constrained
discrete Euler-Lagrange equations

∇4Ld(tk−1, qk−1, tk, qk) (15a)

+∇2Ld(tk, qk, tk+1, qk+1)

+f+
d (tk−1, qk−1, tk, qk) + f−

d (tk, qk, tk+1, qk+1) = 0,

c(tk−1, qk−1, tk, qk) = c(tk, qk, tk+1, qk+1) (15b)

for k = 1, . . . , N − 1 where we assume that
c(t0, q0, t1, q1) = 0 or c(tN−1, qN−1, tN , qN ) =
0. Notice that (15b) implies (14b). Assuming
c(t0, q0, t1, q1) = 0 the equations (15) define a map-
ping

Φ :

{
Cd −→ Cd,

(tk−1, qk−1, tk, qk) 7→ (tk, qk, tk+1, qk+1).

on the constraint submanifold

Cd := {(s, q, t, r) ∈ R ×Q× R ×Q | c(s, q, t, r) = 0} .

We remark that ideal nonholonomic constraints can
be mathematically realized with forcing (7) as a
forced Lagrangian system (6). The nonholonomi-
cally constrained discrete Lagrange-d’Alembert prin-
ciple that we propose here is fully consistent with the
unconstrained forced discrete Lagrange-d’Alembert
principle (11) for forced Lagrangian systems as briefly
suggested by Mardsen and West in [6, Section 5.3.7].
It also generalizes the one proposed by Cortés in
[18, 15] which appears restrictive. It is an extension
in a direction awaited by McLachlan and Perlmutter
in [17, Section 8].
5. The Exact Discrete Forcing Terms for La-

grangian Systems with Nonholonomic Con-

straints: Consider a solution to (1)

q(t) = q(t, t0, q0, t1, q1)

passing through q0 at t0 and q1 at t1 and let

v(t) = v(t, t0, q0, t1, q1) :=
d

dt
q(t, t0, q0, t1, q1)

= ∂tq(t, t0, q0, t1, q1).

Consider the exact discrete Lagrangian (the exact lo-
cal action) as a function of (t0, q0, t1, q1)

LEd (t0, q0, t1, q1) :=

∫ t1

t0

L(t, q(t), v(t))dt.

Notice that for unconstrained systems S1(q0, q1) :=
LEd (t0, q0, t1, q1) can play the role of a generating
function of type I. We denote

v0 := v(t0), v1 := v(t1),

p0 := ∇vL(t0, q0, v0), p1 := ∇vL(t1, q1, v1).

We have

∂q0L
E
d (t0, q0, t1, q1)

=

∫ t1

t0

Lq(t, q(t), v(t))∂q0q(t)

+ Lv(t, q(t), v(t))∂q0v(t)dt

=

∫ t1

t0

Lq(t, q(t), v(t))∂q0q(t)

− d

dt
Lv(t, q(t), v(t))∂q0q(t)dt
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+ Lv(t, q(t), v(t))∂q0q(t)|t1t0

=

∫ t1

t0

(
Lq(t, q(t), v(t))

− d

dt
Lv(t, q(t), v(t))

)
∂q0q(t)dt

+ Lq(t1, q1, v1)∂q0q1 − Lv(t0, q0, v0)∂q0q0

=

∫ t1

t0

Ψ(t, q(t), v(t))TK(t, q(t), v(t))∂q0q(t)dt

− pT0 .

Defining

fE−

d (t0, q0, t1, q1) := −p0 −∇q0L
E
d (t0, q0, t1, q1),

we have obtained

∂q0L
E
d (t0, q0, t1, q1) = −pT0 −fE−

d (t0, q0, t1, q1)
T (16)

where

fE−

d (t0, q0, t1, q1)
T =

−
∫ t1

t0

Ψ(t, q(t), v(t))TK(t, q(t), v(t))∂q0q(t)dt.

From the Fundamental Theorem of Calculus we have

q(t) = q1 +

∫ t

t1

d

ds
q(s)ds = q1 −

∫ t1

t

v(s)ds

leading to

∂q0q(t) = −
∫ t1

t

∂q0v(s)ds.

Hence,

fE−

d (t0, q0, t1, q1)
T (17)

=
R t1

t0
Ψ(t,q(t),v(t))TK(t,q(t),v(t))(

R t1
t ∂q0

v(s)ds)dt

=
R t1

t0
(

R t1
t Ψ(t,q(t),v(t))TK(t,q(t),v(t))∂q0

v(s)ds)dt

=
R t1

t0

“R
s

t0
Ψ(t,q(t),v(t))TK(t,q(t),v(t))∂q0

v(s)dt
”
ds

=
R t1

t0

“R
s

t0
Ψ(t,q(t),v(t))TK(t,q(t),v(t))dt

”
∂q0

v(s)ds.

Similarly, we obtain

∂q1L
E
d (t0, q0, t1, q1) =

pT1 +

∫ t1

t0

Ψ(t, q(t), v(t))TK(t, q(t), v(t))∂q1q(t)dt.

Defining

fE+
d (t0, q0, t1, q1) := p1 −∇q1L

E
d (t0, q0, t1, q1),

we have

∂q1L
E
d (t0, q0, t1, q1) = pT1 − fE+

d (t0, q0, t1, q1)
T . (18)

We obtain

fE+
d (t0, q0, t1, q1)

T =

−
∫ t1

t0

Ψ(t, q(t), v(t))TK(t, q(t), v(t))∂q1q(t)dt

and

∂q1q(t) =

∫ t

t0

∂q1v(s)ds

leading to

fE+
d (t0, q0, t1, q1)

T = (19)

−

R t1
t0

(
R

t1
s

Ψ(t,q(t),v(t))TK(t,q(t),v(t))dt)∂q1
v(s)ds.

We assume that the values tk are independent of the
values qj . For example one considers a constant step-
size h and the values

tk := t0 + kh for k = 0, . . . , N.

We calculate for k = 1, . . . , N − 1

∇qk

N−1∑

j=0

LEd (tj , qj , tj+1, qj+1)

= ∇qk
(LEd (tk−1, qk−1, tk, qk)

+ LEd (tk, qk, tk+1, qk+1))

= ∇4L
E
d (tk−1, qk−1, tk, qk)

+ ∇2L
E
d (tk, qk, tk+1, qk+1)

= pk − fE+
d (tk−1, qk−1, tk, qk)

− pk − fE−

d (tk, qk, tk+1, qk+1)

= −fE+
d (tk−1, qk−1, tk, qk)

− fE−

d (tk, qk, tk+1, qk+1).

This leads to

∇4L
E
d (tk−1, qk−1, tk, qk) + ∇2L

E
d (tk, qk, tk+1, qk+1)

+fE+
d (tk−1, qk−1, tk, qk) + fE−

d (tk, qk, tk+1, qk+1) = 0
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where

fE+
d (tk−1, qk−1, tk, qk)

T (20a)

=−

R tk
tk−1

Ψ(t,q(t),v(t))TK(t,q(t),v(t))T ∂qk
q(t)dt

=−

R tk
tk−1

(
R

tk
s

Ψ(t,q(t),v(t))TK(t,q(t),v(t))dt)∂qk
v(s)ds,

fE−

d (tk, qk, tk+1, qk+1)
T (20b)

−

R tk+1

tk
Ψ(t,q(t),v(t))TK(t,q(t),v(t))T ∂qk

q(t)dt

=
R tk+1

tk

“R
s

tk
Ψ(t,q(t),v(t))TK(t,q(t),v(t))dt

”
∂qk

v(s)ds.

5.1. Ideal Holonomic Constraints: When the
constraints (1c) are holonomic, we have

0 = g(t, q)

for a certain function g : R× R
n −→ R

m. Therefore,
we get

0 = ∂q0g(t, q(t)) = gq(t, q(t))∂q0q(t).

In this situation, since

0 = gt(t, q) + gq(t, q)v =: k(t, q, v),

we have kv(t, q, v) = gq(t, q), hence we must have

0 = kv(t, q(t), v(t))∂q0q(t),

0 = kv(t, q(t), v(t))∂q1q(t).

For ideal holonomic constraints we have K(t, q, v) =
kv(t, q, v), and since kv(t, q, v) = gq(t, q) we obtain

∇q0L
E
d (t0, q0, t1, q1) = −p0,

∇q1L
E
d (t0, q0, t1, q1) = p1,

and thus
fE+
d ≡ 0, fE−

d ≡ 0.

6. Lagrange-d’Alembert SPARK Integrators:

Following [25, 26, 27] the application of an s-stage
SPARK method to Lagrangian systems (1) with non-
holonomic constraints, stepsize h, and consistent ini-
tial values (t0, q0, v0) at t0, i.e., 0 = k(t0, q0, v0), can
be expressed as

Qi = q0 + h

s∑

j=1

aijVj for i = 1, . . . , s, (21a)

Pi = p0 + h

s∑

j=1

âijFj + h

s∑

j=1

ãijRj (21b)

for i = 1, . . . , s,

q1 = q0 + h

s∑

j=1

bjVj , (21c)

p1 = p0 + h

s∑

j=1

b̂jFj + h

s∑

j=1

b̃jRj , (21d)

0 =

s∑

j=1

ωijKj for i = 1, . . . , s− 1, (21e)

0 = k(t1, q1, v1), (21f)

where t1 := t0 + h and

Ti := t0 + cih, Pi := ∇vL(Ti, Qi, Vi),

Fi := ∇qL(Ti, Qi, Vi), Ri := −K(Ti, Qi, Vi)
TΨi,

Ki := k(Ti, Qi, Vi) for i = 1, . . . , s,

p0 := ∇vL(t0, q0, v0), p1 := ∇vL(t1, q1, v1).

The coefficients ωij in (21e) can be taken for exam-
ple as ωij := bjc

i−1
j for i = 1, . . . , s− 1, j = 1, . . . , s.

Under certain assumptions on the coefficients of the
SPARK method we obtain a mapping (t1, q1, v1) =
Φh(t0, q0, v0) for |h| sufficiently small [25, 26, 27]. In-
stead of considering the unknown quantities in equa-
tions (21) as implicit functions of (t0, q0, v0, h) for
h = t1 − t0, we consider them as implicit functions
of (t0, q0, t1, q1). More precisely, we implicitly define
by (21) as functions of (t0, q0, t1, q1) the quantities
v0, v1, p0, p1, Qi, Vi,Ψi, Pi, Fi, Ri,Ki for i = 1, . . . , s.
The main result of this paper is as follows:

Theorem 1 For Lagrangian systems with nonholo-
nomic constraints (1) and a corresponding s-stage
SPARK method (21), suppose t0, q0 and t1, q1 to be
given. If the SPARK coefficients satisfy

b̂i = bi for i = 1, . . . , s, (22a)

b̂iaij + bjâji − b̂ibj = 0 for i, j = 1, . . . , s, (22b)

then we have a nonholonomically constrained discrete
Lagrange-d’Alembert integrator in the sense of Defi-
nition 1 with

Ld(t0, q0, t1, q1) = h
s∑

i=1

biL(Ti, Qi, Vi),
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f+
d (t0, q0, t1, q1)

T

=−h
P

s
i=1

bi(h
P

s
j=1

(ebj−eaij)ΨT
j K(Tj ,Qj ,Vj))∂q1

Vi,

f−

d (t0, q0, t1, q1)
T

= h

s∑

i=1

bi



h
s∑

j=1

ãijΨ
T
j K(Tj, Qj, Vj)



 ∂q0Vi.

Suppose in addition that the SPARK coefficients sat-
isfy the symmetry conditions

cs+1−i + ci = 1, (23a)

as+1−i,s+1−j + aij = bs+1−j = bj, (23b)

âs+1−i,s+1−j + âij = b̂s+1−j = b̂j, (23c)

ãs+1−i,s+1−j + ãij = b̃s+1−j = b̃j, (23d)

for i, j = 1, . . . , s, then the SPARK method (21) is
symmetric and we have

Ld(t1, q1, t0, q0) = −Ld(t0, q0, t1, q1),
f+
d (t1, q1, t0, q0)) = −f−

d (t0, q0, t1, q1),

f−

d (t1, q1, t0, q0)) = −f+
d (t0, q0, t1, q1).

Proof. We calculate

∂q0Ld(t0, q0, t1, q1)

= h

s∑

i=1

biLq(Qi, Vi)∂q0Qi

+ h

s∑

i=1

biLv(Qi, Vi)∂q0Vi

= h

s∑

i=1

biF
T
i


I + h

s∑

j=1

aij∂q0Vj




+ h

s∑

i=1

biP
T
i ∂q0Vi

= h
s∑

i=1

biF
T
i I + h2

s∑

i=1

s∑

j=1

biaijF
T
i ∂q0Vj

+ h
s∑

i=1

bi

(
pT0 + h

s∑

j=1

âijF
T
j

+ h

s∑

j=1

ãijR
T
j

)
∂q0Vi

= h

s∑

j=1

bjF
T
j I

+ h2
s∑

i=1

s∑

j=1

(bjaji + biâij)F
T
j ∂q0Vi

+ pT0 h

s∑

i=1

bi∂q0Vi

+ h2
s∑

i=1

bi




s∑

j=1

ãijR
T
j


 ∂q0Vi.

From (21c) we have

0 = I + h

s∑

i=1

bi∂q0Vi,

hence

∂q0Ld(t0, q0, t1, q1)

= h2
s∑

i=1

s∑

j=1

(bjaji + biâij − bjbi)F
T
j ∂q0Vi − pT0

+ h2
s∑

i=1

bi




s∑

j=1

ãijR
T
j


 ∂q0Vi.

Under the assumptions (22) we obtain

∂q0Ld(t0, q0, t1, q1)

= −pT0

− h

s∑

i=1

bi


h

s∑

j=1

ãijΨ
T
j K(Tj, Qj , Vj)


 ∂q0Vi

which is the discrete analogue of (16)-(17). Similarly,
we get

∂q1Ld(t0, q0, t1, q1)

= h2
s∑

i=1

s∑

j=1

(bjaji + biâij − b̂jbi)F
T
j ∂q1Vi + pT1

+ h2
s∑

i=1

bi




s∑

j=1

(ãij − b̃j)R
T
j



 ∂q1Vi.
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Under the assumptions (22) we obtain

∂q1Ld(t0, q0, t1, q1) = pT1

+h
s∑

i=1

bi



h
s∑

j=1

(̃bj − ãij)Ψ
T
j K(Tj, Qj , Vj)



 ∂q1Vi

which is the discrete analogue of (18)-(19). Under
the additional symmetry conditions (23) the SPARK
method (21) is symmetric, and the internal values
of the adjoint method satisfy T i = Ts+1−i, Qi =
Qs+1−i, V i = Vs+1−i,Ψi = Ψs+1−i, see [26, 27]. We
have

Ld(t1, q1, t0, q0)

= −h
s∑

i=1

biL(T i, Qi, V i)

= −h
s∑

i=1

biL(Ts+1−i, Qs+1−i, Vs+1−i)

= −h
s∑

i=1

bs+1−iL(Ti, Qi, Vi)

= −h
s∑

i=1

biL(Ti, Qi, Vi) = −Ld(t0, q0, t1, q1).

We have

f−

d (t1, q1, t0, q0)
T

= (−h)
Ps

i=1
bi

“
(−h)

Ps
j=1

eaijΨj
T
K(T j ,Qj ,V j)

”
∂q1

V i

= h
P

s
i=1

bi(h
P

s
j=1

eaijΨT
s+1−j

K(Ts+1−j ,Qs+1−j,Vs+1−j))∂q1
Vs+1−i

= h
Ps

i=1
bs+1−i(h

Ps
j=1

eas+1−i,s+1−jΨ
T
j K(Tj ,Qj ,Vj))∂q1

Vi

= h
P

s
i=1

bi(h
P

s
j=1

(ebj−eaij)Ψ
T
j K(Tj ,Qj ,Vj))∂q1

Vi

= −f+
d (t0, q0, t1, q1)

T .

Similarly, we get

f+
d (t1, q1, t0, q0)

T

= h
P

s
i=1

bi

“
(−h)

P
s
j=1

(ebj−eaij)Ψj
T
K(T j ,Qj ,V j)

”
∂q0

V i

= −h
Ps

i=1
bi(h

Ps
j=1

(ebj−eaij)Ψ
T
s+1−j

K(Ts+1−j ,Qs+1−j,Vs+1−j))∂q0
Vs+1−i

= −h
Ps

i=1
bs+1−i(h

Ps
j=1

(ebs+1−j−eas+1−i,s+1−j)Ψ
T
j

K(Tj ,Qj ,Vj))∂q0
Vi

= −h
P

s
i=1

bi(h
P

s
j=1

eaijΨT
j K(Tj ,Qj ,Vj))∂q0

Vi

= −f−

d (t0, q0, t1, q1)
T .

Results about global convergence of SPARK meth-
ods can be found in [26, 27].
7. Examples of Lagrange-d’Alembert SPARK

Integrators: Examples of SPARK methods satis-
fying the conditions of Theorem 1 are given by the
family of Lobatto SPARK methods described in [26]
and the family of Gauss SPARK (also called SRK-
DAE2) methods given in [27]. The s-stage Gauss
SPARK methods have optimal global order of con-
vergence 2s, while the s-stage Lobatto SPARK meth-
ods have global order of convergence 2s− 2 as shown
in [26, 27]. We present a few specific examples of
such methods below. In particular we consider their
application to time-independent Lagrangians of the
form L(t, q, v) = 1

2v
TMv − U(q) with M symmet-

ric and nonsingular, and scleronomic nonholonomic
constraints affine in v, i.e., k(t, q, v) = K(q)v + b(q).
7.1. The “Symplectic” Euler SPARK Method

I: For s = 1 the Butcher-tableaux of coefficients of
the “symplectic” Euler SPARK method I of order 1
are given by

0 0

A 1

1

Â

1

Ã
b̂ = b̃ = b.

The method reads as follows

q1 = q0 + hV1, P1 = p0 + h(F1 +R1),

p1 = P1, 0 = k(t1, q1, v1),

where

t1 := t0 + h, p0 := ∇vL(t0, q0, v0),

p1 := ∇vL(t1, q1, v1), P1 := ∇vL(t0, q0, V1),

F1 := ∇qL(t0, q0, V1), R1 := −K(t0, q0, V1)
TΨ1.

This method does not satisfy the symmetry condi-
tions (23). For L(t, q, v) = 1

2v
TMv − U(q) with M

symmetric and nonsingular, k(t, q, v) = K(q)v+b(q),
we have V1 = v1 and we obtain a system of nonlinear
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equations for q1, v1, and Ψ1

q1 = q0 + hv1,

Mv1 = Mv0 − h(∇U(q0) +K(q0)
TΨ1),

0 = K(q1)v1 + b(q1).

When K(q) = K = Const and b(q) = b = const,
the method is linearly implicit, i.e., only a linear sys-
tem needs to be solved. This is a method given in
[17, Formula (4.17)] (with a typo, there should be
∇V (qi)) when M = I and b(q) ≡ 0.
7.2. The “Symplectic” Euler SPARK Method

II: For s = 1 the Butcher-tableaux of coefficients of
the “symplectic” Euler SPARK method II of order 1
are given by

1 1

A 1

0

Â

0

Ã
b̂ = b̃ = b.

The method reads as follows

q1 = q0 + hV1, P1 = p0, p1 = p0 + h(F1 +R1),

0 = k(t1, q1, v1),

where

t1 := t0 + h, p0 := ∇vL(t0, q0, v0),

p1 := ∇vL(t1, q1, v1), P1 := ∇vL(t1, q1, V1),

F1 := ∇qL(t1, q1, V1), R1 := −K(t1, q1, V1)
TΨ1.

This method does not satisfy the symmetry condi-
tions (23). For L(t, q, v) = 1

2v
TMv − U(q) with M

symmetric and nonsingular, k(t, q, v) = K(q)v+b(q),
we have V1 = v0 and we obtain a system of linear
equations for q1, v1, and Ψ1

q1 = q0 + hv0,

Mv1 = Mv0 − h(∇U(q1) +K(q1)
TΨ1),

0 = K(q1)v1 + b(q1).

The method is thus linearly implicit. This is a
method given in [17, Formula (4.12)] when M = I
and b(q) ≡ 0.
7.3. The 1-Stage Gauss SPARK Method, the

SPARK Midpoint Rule: For s = 1 the Butcher-
tableaux of coefficients of the 1-stage Gauss SPARK

method of order 2, the SPARK midpoint rule, are
given by

1/2 1/2

A 1
, Â = Ã = A, b̂ = b̃ = b.

The method reads as follows

Q1 = q0 + h
1

2
V1, P1 = p0 + h

1

2
(F1 +R1),

q1 = q0 + hV1, p1 = p0 + h(F1 +R1),

0 = k(t1, q1, v1),

where

T1 := t0 +
h

2
, t1 := t0 + h,

p0 := ∇vL(t0, q0, v0), p1 := ∇vL(t1, q1, v1),

P1 := ∇vL(T1, Q1, V1), F1 := ∇qL(T1, Q1, V1),

R1 := −K(T1, Q1, V1)
TΨ1.

This method satisfies the symmetry conditions (23).
With 0 = k(T1, Q1, V1) instead of 0 = k(t1, q1, v1)
to treat the nonholonomic constraint (1c), the “stan-
dard” 1-stage Gauss IRK method does not satisfy the
nonholonomic constraints (1c) and it has only order
1. For L(t, q, v) = 1

2v
TMv−U(q) with M symmetric

and nonsingular, k(t, q, v) = K(q)v + b(q), we obtain
a system of nonlinear equations for q1, v1, and Ψ1

q1 = q0 +
h

2
(v0 + v1) ,

Mv1 = Mv0 − h∇U
(
q0 + q1

2

)

− hK

(
q0 + q1

2

)T
Ψ1,

0 = K(q1)v1 + b(q1).

7.4. The 2-Stage Gauss SPARK Method: For
s = 2 the Butcher-tableaux of coefficients of the 2-
stage Gauss SPARK method of order 4 are given by

1/2 −
√

3/6 1/4 1/4 −
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4

A 1/2 1/2

,

Â = Ã = A, b̂ = b̃ = b.
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The method reads as follows

Q1 = q0 + h

(
1

4
V1 +

(
1

4
−

√
3

6

)
V2

)
,

P1 = p0 + h

(
1

4
(F1 +R1)

+

(
1

4
−

√
3

6

)
(F2 +R2)

)
,

Q2 = q0 + h

((
1

4
+

√
3

6

)
V1 +

1

4
V2

)
,

P2 = p0 + h

((
1

4
+

√
3

6

)
(F1 +R1)

+
1

4
(F2 +R2)

)
,

q1 = q0 + h

(
1

2
V1 +

1

2
V2

)
,

p1 = p0 + h

(
1

2
(F1 +R1) +

1

2
(F2 +R2)

)
,

0 =
1

2
K1 +

1

2
K2,

0 = k(t1, q1, v1).

where

T1 := t0 +

(
1

2
−

√
3

6

)
h, T2 := t0 +

(
1

2
+

√
3

6

)
h,

t1 := t0 + h, p0 := ∇vL(t0, q0, v0),

p1 := ∇vL(t1, q1, v1), P1 := ∇vL(T1, Q1, V1),

P2 := ∇vL(T2, Q2, V2), F1 := ∇qL(T1, Q1, V1),

F2 := ∇qL(T2, Q2, V2), R1 := −K(T1, Q1, V1)
TΨ1,

R2 := −K(T2, Q2, V2)
TΨ2, K1 := k(T1, Q1, V1),

K2 := k(T2, Q2, V2).

This method satisfies the symmetry conditions (23).
With 0 = K1 and 0 = K2 instead of 0 = 1

2K1 +
1
2K2 and 0 = k(t1, q1, v1) to treat the nonholo-
nomic constraint (1c), the “standard” 2-stage Gauss
IRK method does not satisfy the nonholonomic con-
straints (1c) and it has only order 2.

7.5. The 2-Stage Lobatto IIIA-B SPARK

Method: For s = 2 the Butcher-tableaux of coeffi-
cients of the 2-stage Lobatto IIIA-B SPARK method
of order 2 are given by

0 0 0
1 1/2 1/2

A 1/2 1/2

1/2 0
1/2 0

Â

Ã = Â, b̂ = b̃ = b.

The method reads as follows

Q1 = q0,

P1 = p0 + h
1

2
(F1 +R1),

Q2 = q0 + h

(
1

2
V1 +

1

2
V2

)
,

P2 = p0 + h
1

2
(F1 +R1),

q1 = q0 + h

(
1

2
V1 +

1

2
V2

)
,

p1 = p0 + h

(
1

2
(F1 +R1) +

1

2
(F2 +R2)

)
,

0 =
1

2
K1 +

1

2
K2,

0 = k(t1, q1, v1),

where

T1 := t0, T2 := t0 + h, (24)

t1 := t0 + h, p0 := ∇vL(t0, q0, v0),

p1 := ∇vL(t1, q1, v1), P1 := ∇vL(T1, Q1, V1),

P2 := ∇vL(T2, Q2, V2), F1 := ∇qL(T1, Q1, V1),

F2 := ∇qL(T2, Q2, V2), R1 := −K(T1, Q1, V1)
TΨ1,

R2 := −K(T2, Q2, V2)
TΨ2, K1 := k(T1, Q1, V1),

K2 := k(T2, Q2, V2).

This method satisfies the symmetry conditions (23).
It is interesting to notice that this method is not
equal to the composition with stepsize h/2 of the
“symplectic” Euler SPARK method I with the “sym-
plectic” Euler SPARK method II or vice versa. For
L(t, q, v) = 1

2v
TMv − U(q) with M symmetric and
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nonsingular, k(t, q, v) = K(q)v+ b(q), we obtain first
a system of nonlinear equations for q1, V1,Ψ1

MV1 = Mv0 − h
1

2
(∇U(q0) +K(q0)

TΨ1),

q1 = q0 + hV1,

0 =
1

2
(K(q0)V1 + b(q0)) (25)

+
1

2
(K(q1)V1 + b(q1)),

which is a linear system when K(q) = K = Const
and b(q) = b = const, and then a system of linear
equations for v1, (h/2)Ψ2

Mv1 +K(q1)
T

(
h

2
Ψ2

)
= MV1 − h

1

2
∇U(q1),

K(q1)v1 = −b(q1).

This is the analog for systems with non-
holonomic constraints of the Störmer/leap-
frog/Verlet/RATTLE/SHAKE/2-stage Lobatto
IIIA-B SPARK methods for systems with or without
holonomic constraints. For constant stepsizes hk = h
the step-by-step integration of the above method
can be simply expressed as follows

Mvk+ 1
2

= Mvk− 1
2
− h(∇U(qk) +K(qk)

T Ψ̃k),

qk+1 = qk + hvk+ 1
2
,

0 =
1

2
(K(qk)vk+ 1

2
+ b(qk))

+
1

2
(K(qk+1)vk+ 1

2
+ b(qk+1)).

In this situation the values of vk,Ψ2,k and the equa-
tions

Mvk +K(qk)
T

(
h

2
Ψ2,k

)
= Mvk+ 1

2
− h

1

2
∇U(qk),

K(qk)vk = −b(qk).

are not needed in a step-by-step integration. The
method above is not equivalent to [20, Formula (11)]
which does not make use of the additional constraint
(25). It is also not equivalent to the McLachlan-
Perlmutter’s 2-stage Lobatto IIIB-A LDA method,
see [17, Formula (4.18)] and [34], which does not make

use of the additional constraint (25), but which can
be interpreted as a 2-stage Lobatto IIIB-A method
where the 2-stage Lobatto IIIB coefficients are ap-
plied to q̇ = v and the 2-stage Lobatto IIIA co-
efficients are applied to Mv̇ = −∇U(q) − K(q)Tψ.
The McLachlan-Perlmutter’s 2-stage Lobatto IIIB-A
LDA method can be expressed as

Q1 = q0 + h
1

2
v0, (26a)

Mv1 = Mv0 − h(∇U(Q1) +K(Q1)
TΨ1), (26b)

q1 = q0 + h

(
1

2
v0 +

1

2
v1

)
, (26c)

0 = K(q1)v1 + b(q1). (26d)

All those methods are semi-implicit and ∇U must be
evaluated only once per time step.
7.6. The 2-Stage Lobatto IIIA-B-D SPARK

Method: For s = 2 the Butcher-tableaux of co-
efficients of the 2-stage Lobatto IIIA-B-D SPARK
method of order 2 are given by

0 0 0
1 1/2 1/2

A 1/2 1/2

1/2 0
1/2 0

Â

1/4 −1/4
3/4 1/4

Ã

b̂ = b̃ = b.

For s = 2 the Lobatto IIIA-B-D SPARK method of
order 2 reads as follows

Q1 = q0,

P1 = p0 + h

(
1

2
F1 +

1

4
R1 −

1

4
R2

)
,

Q2 = q0 + h

(
1

2
V1 +

1

2
V2

)
,

P2 = p0 + h

(
1

2
F1 +

3

4
R1 +

1

4
R2

)
,

q1 = q0 + h

(
1

2
V1 +

1

2
V2

)
,

p1 = p0 + h

(
1

2
(F1 +R1) +

1

2
(F2 +R2)

)
,

0 =
1

2
K1 +

1

2
K2,
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0 = k(t1, q1, v1),

with T1, T2, t1, p0, p1, P1, P2, F1, F2, R1, R2,K1,K2 as
in (24). This method satisfies the symmetry condi-
tions (23). We could also have considered the Lobatto
IIIA-D SPARK method of order 2, the pure Lobatto
IIID SPARK method of order 2, etc.
8. Numerical Experiments:

8.1. The Nonholonomic Particle: This problem
can be found in [18, 15, 20]. We consider the time-
independent Lagrangian

L(q, v) = T (v) − U(q),

T (v) :=
1

2
(v2

1 + v2
2 + v2

3), U(q) := q21 + q22 ,

with ideal scleronomic nonholonomic constraint

v3 − q2v1 = 0

which is linear in v. From subsection 2.2 the energy

E(q, v) = T (v) + U(q)

is conserved. The system is reversible under the
transformation R : (q, v) 7→ (q,−v). We consider
the following initial conditions at t0 = 0

q0 =
(

1 0 0
)T
, v0 =

(
0 1 0

)T
.

We have applied the s-stage Gauss SPARK methods
for s = 1, 2, 3 with stepsize h = 0.2 on the interval
t ∈ [0, 250]. The energy errors are plotted in Fig. 1
and clearly remain bounded.
8.2. The Skate on an Inclined Plane: This prob-
lem can be found in [12, 29]. We consider the time-
independent Lagrangian

L(q, v) = T (v) − U(q),

T (v) :=
1

2
m(v2

1 + v2
2) +

1

2
Iv2

3 , U(q) := mgq1 sin(β),

with ideal scleronomic nonholonomic constraint

cos(q3)v2 − sin(q3)v1 = 0

which is linear in v = (v1, v2, v3)
T . From subsec-

tion 2.2 the energy

E(q, v) = T (v) + U(q)

0 50 100 150 200 250
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8
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−3

t

E
k−

E
0
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−3

−2
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0
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E
k−

E
0

2−stage Gauss SPARK 

0 50 100 150 200 250
0

0.5

1

1.5

2
x 10

−7

t

E
k−

E
0

3−stage Gauss SPARK 

Figure 1: Energy error of the s-stage Gauss SPARK
methods for s = 1, 2, 3 applied with constant stepsize
h = 0.2 on the interval [0, 250] to the nonholonomic
particle.

is conserved. The system is reversible under the
transformation R : (q, v) 7→ (q,−v). As in [29] we
consider the parameters m = 1, I = 1, g = 1,
β = π/2, and the following initial conditions at t0 = 0

q0 =
(

0 0 0
)T
, v0 =

(
0 0 1

)T
.

We have applied the s-stage Lobatto IIIA-B SPARK
methods for s = 2, 3, 4 with stepsize h = 0.1 on the
interval t ∈ [0, 100]. The energy errors are plotted in
Fig. 2 and clearly remain bounded.
8.3. A Mobile Robot with Fixed Orientation

and a Potential: This problem can be found in [18,
15]. We consider the time-independent Lagrangian

L(q, v) = T (v) − U(q),

T (v) :=
1

2
m(v2

1 + v2
2) +

1

2
Iv2

3 +
3

2
Iωv

2
4 ,

U(q) := 10 sin(q4),

with ideal scleronomic nonholonomic constraints

v1 − ℓ cos(q3)v4 = 0, v2 − ℓ sin(q3)v4 = 0,

which are linear in v = (v1, v2, v3, v4)
T . From sub-

section 2.2 the energy

E(q, v) = T (v) + U(q)
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Figure 2: Energy error of the s-stage Lobatto IIIA-B
SPARK methods for s = 2, 3, 4 applied with constant
stepsize h = 0.1 on the interval [0, 100] to the skate
on an inclined plane.

is conserved. The system is reversible under the
transformation R : (q, v) 7→ (q,−v). We consider
the parameters m = 1, I = 1, Iω = 1, ℓ = 1, and the
following initial conditions at t0 = 0

q0 =
(

0 0 0 0
)T
, v0 =

(
1 0 0 1

)T
.

We have applied the s-stage Lobatto IIIA-B-D
SPARK methods for s = 2, 3, 4 with stepsize h = 0.2
on the interval t ∈ [0, 150]. The energy errors are
plotted in Fig. 3 and clearly remain bounded.
8.4. The McLachlan and Perlmutter’s Parti-

cles: This chaotic problem can be found in [17, 34].
We consider the time-independent Lagrangian

L(q, v) = T (v) − U(q)

where q, v ∈ R
n with n = 2m+ 1, m ≥ 2,

T (v) :=
1

2
‖v‖2

2,

U(q) :=
1

2

(
‖q‖2

2 + q2m+2q
2
m+3 +

m∑

i=1

q21+iq
2
m+1+i

)
,

with ideal scleronomic nonholonomic constraint

v1 +

n∑

i=m+2

qivi = 0,
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−2

−1

0

1
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t

E
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E
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E
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2−stage Lobatto IIIA−B−D SPARK 

Figure 3: Energy error of the s-stage Lobatto IIIA-B-
D SPARK methods for s = 2, 3, 4 applied with con-
stant stepsize h = 0.2 on the interval [0, 150] to the
mobile robot with fixed orientation and a potential.

which is linear in v. From subsection 2.2 the energy

E(q, v) = T (v) + U(q)

is conserved. The system is reversible under the
transformation R : (q, v) 7→ (q,−v). As in [17, 34],
for m = 3 (n = 7) we consider the J + 1 following
initial conditions at t0 = 0

qj0 =
(
αj 0.6 0.4 0.2 1 1 1

)T
,

vj0 =
(

0 βj 0 0 0 0 0
)T
.

where αj := cos(jπ/(2J)), βj := sin(jπ/(2J)) for j =
0, . . . , J . For those initial conditions the energy is in-
dependent of j and we have E(qj0, vj0) = E0 = 3.06.
As a first method we consider the 2-stage Lobatto
IIIA-B SPARK method. As a second method we
consider a modified 2-stage Lobatto IIIA-B SPARK
method where the condition 0 = 1

2K1 + 1
2K2 is re-

placed by

0 = k

(
t0 +

h

2
, q0 +

h

2
V1, V1

)
.

As a third method we consider McLachlan-
Perlmutter’s 2-stage Lobatto IIIB-A LDA method
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(26). For these 3 methods we consider a constant
stepsize h = 0.05 and the interval t ∈ [0, 50000] for
J + 1 = 10 different initial conditions on the same
energy surface E0 = 3.06. In Fig. 4 the quantities at
tk := t0 + 100kh for k = 0, 1, 2, . . . , 10000

1

h4
µ((E·k − E0)

2)

where

µ((E·k − E0)
2) :=

1

(J + 1)

J∑

j=0

(Ejk − E0)
2

are plotted for the 3 methods where Ejk :=
E(qjk, vjk). These 3 methods clearly behave very
similarly and one can say that they are all equally
good for this problem. The energy error for these 3
methods seems to follow a random walk, after time
tk we observe that we have approximately

1

h4
µ((E·k − E0)

2) ≈ O(tk)

or equivalently
√
µ((E·k − E0)2) ≈ O(h2

√
tk).
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Figure 4: A measure of energy error for the 2-stage
Lobatto IIIA-B SPARK method, the modified 2-stage
Lobatto IIIA-B SPARK method, and the McLachlan-
Perlmutter 2-stage Lobatto IIIB-A LDA method, ap-
plied with constant stepsize h = 0.05 on the interval
[0, 50000] to the McLachlan and Perlmutter’s parti-
cles.

9. Conclusion: For systems in mechanics with ideal
nonholonomic constraints we have defined a new dis-

crete Lagrange-d’Alembert principle based on a dis-
crete Lagrange-d’Alembert principle for forced La-
grangian systems. A large class of specialized parti-
tioned additive Runge-Kutta (SPARK) methods has
been shown to satisfy this principle. In particular
symmetric Lagrange-d’Alembert SPARK integrators
of any order have been obtained based on Gauss and
Lobatto coefficients.
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