Maximum Flows and Minimum Cuts

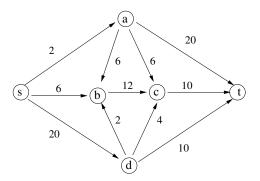
Kasturi Varadarajan

Department of Computer Science, University of Iowa

April 2, 2018

The input:

- ▶ A directed graph G = (V, E)
- ► Two special vertices: source s and target t
- ▶ A function $c: E \to \mathbb{R}_{\geq 0}$, that assigns a capacity to each edge.

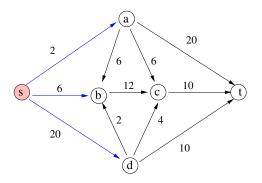


- ightharpoonup A(s,t)-cut is an ordered pair (S,T) such that
 - 1. S and T partition V
 - 2. $s \in S$ and $t \in T$
- ► Cap(S, T), the capacity of cut (S, T), is the sum of the capacities of all edges crossing the cut (from S to T):

$$\sum_{u \in S, v \in T} c(u, v)$$

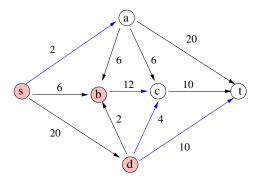
For notational convenience, we pretend c(u, v) = 0 if $(u, v) \notin E$.

Cut: Example 1



Capacity = 2 + 6 + 20 = 28

Cut: Example 2



Capacity = 2 + 12 + 4 + 10 = 28

- ▶ The goal is to find an (s, t)-cut with minimum capacity
- Such a cut is known as the minimum capacity cut, or a minimum cut
- ▶ Removing edges crossing a minimum cut gives cheapest way of ensuring *s* cannot reach *t*.

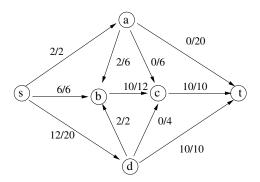
Maximum Flow Problem

- Input same as in minimum cut problem
- ▶ An (s,t)-flow is a function $f: E \to \mathbb{R}_{\geq 0}$ that satisfies the following conservation constraint at each vertex v other than the source s and sink t:

$$\sum_{u} f(u, v) = \sum_{w} f(v, w)$$

- ▶ That is, the total flow into v is the total flow out of v.
- f(u, v) is referred to as the flow on (u, v).

Flow Example



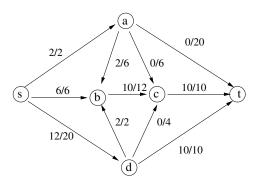
Value of Flow

▶ The value of flow f, denoted |f|, is

$$|f|:=\sum_{w}f(s,w)-\sum_{u}f(u,s).$$

▶ That is, |f| is the net flow out of the source s.

Flow Example



Value of flow = 2 + 6 + 12 = 20

Feasible Flow

A flow f is feasible if for each edge (u, v), flow on edge is at most its capacity:

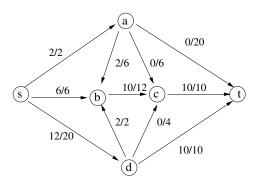
$$f(u, v) \leq c(u, v)$$

► This is called the capacity constraint

Maximum Flow Problem

- ► The input is directed graph *G* along with edge capacities, source *s* and sink *t*.
- ► The goal is to find a feasible flow f that maximizes the value |f|. Such a maximizing flow is called a maximum flow

Flow Example



Value of flow = 2 + 6 + 12 = 20

Source vs. Sink

Let us use some notation for the net flow out of v:

$$\partial f(v) := \sum_{w} f(v, w) - \sum_{u} f(u, v)$$

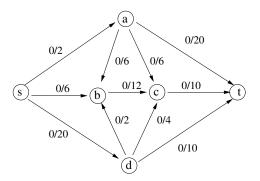
We have:

$$0 = \sum_{v} \partial f(v) = \partial f(s) + \partial f(t)$$

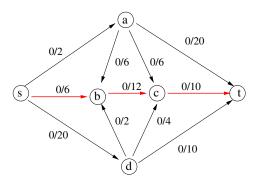
- ▶ The first equality follows because any edge (u, v) contributes f(u, v) to $\partial f(u)$ and -f(u, v) to $\partial f(v)$.
- ▶ The second equality uses flow conservation.

Source vs. Sink

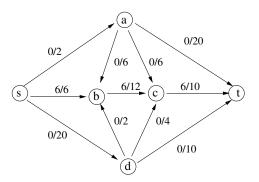
- ▶ Thus, $|f| = \partial f(s) = -\partial f(t)$
- ▶ That is, net flow out of *s* equals net flow into *t*. We will see a generalization of this idea a bit later.



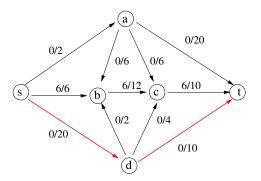
Value of flow = 0



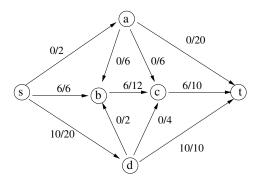
Value of flow = 0



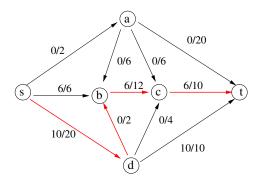
Value of flow = 6



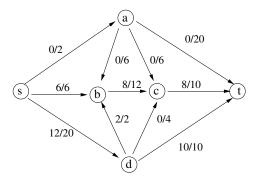
Value of flow = 6



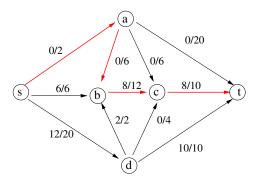
Value of flow = 16



Value of flow = 16

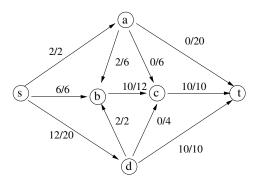


Value of flow = 18



Value of flow = 18

Can we improve on this flow?



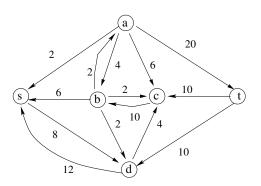
Value of flow = 20

Residual Network

Suppose we have a flow f that is feasible. Also assume that in the network G, for every pair of vertices u and v, at most one of (u, v) and (v, u) is an edge in G.

- ▶ For each $(u, v) \in E$, let
 - 1. $c_f(u, v) := c(u, v) f(u, v)$
 - 2. $c_f(v, u) := f(u, v)$
- We call $c_f(e)$ the residual capacity of e.
- ► The residual network *G_f* consists of all edges whose residual capacity is strictly positive.

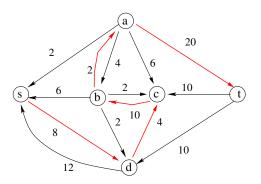
Residual Network



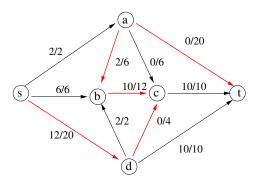
Ford-Fulkerson Algorithm

- ▶ Initialize f to the zero flow
- ▶ While (there is a path from s to t in residual G_f)
 - Let π be any (simple) path from s to t in G_f .
 - ▶ Augment f using π , as described below.

Flow Augmentation

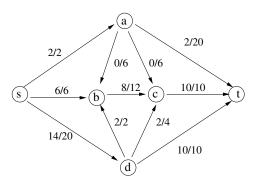


Flow Augmentation



Value of flow = 20

Augmented Flow



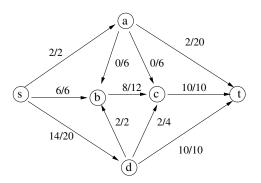
Value of flow = 22

Flow Augmentation

Augmenting flow f using path π in residual network G_f :

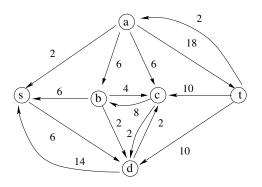
- ▶ Let $\mu > 0$ be the minimum residual capacity of an edge in π .
- ▶ For each edge $(u, v) \in G$
 - $f'(u, v) \leftarrow f(u, v) + \mu$ if (u, v) is on π
 - $f'(u, v) \leftarrow f(u, v) \mu$ if (v, u) is on π .
 - ▶ $f'(u, v) \leftarrow f(u, v)$ otherwise.
- ▶ $f \leftarrow f'$.

Is this flow optimal?

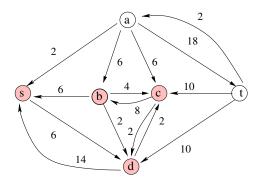


Value of flow = 22

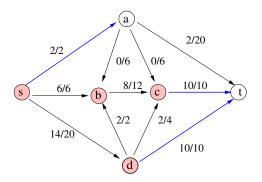
Algorithm Terminates: No path in residual network



Algorithm Terminates: Reachability in residual network



Flow vs. Cut



flow value = 22, cut capacity = 22