Algorithmic Excursions: Topics in Computer Science II

Spring 2016

Lecture 5 & 6 : ε -approximations, ε -nets from ε -approximations and the ε -net theorem

Lecturer: Kasturi Varadarajan

Scribe: Talal Riaz

3.1 ε -approximations and ε -nets via ε -approximations

Theorem 3.1 Suppose (X,R) has VC-dimension $d \ge 1$, and suppose that an ε is given where $0 \le \varepsilon \le 1$. Then (X,R) has an ε -approximation $A \subseteq X$ of size $O(\frac{d}{\varepsilon^2}) \ln(d/\varepsilon)$.

Proof: Assume that the size of the ground set is an integer power of 2 (as a homework problem try to prove this theorem without this assumption).

Let $X_0 = X$. Construct X_1, \ldots, X_t as follows: For $0 \le i \le t - 1$, let $X_{i+1} \subseteq X_i$ be such that:

- $|X_{i+1}| = |X_i|/2$
- X_{i+1} is an ε_{i+1} -approximation of $(X_i, R|_{X_i})$ where, (this can be done because of lemma 3.7 from the last lecture)

$$\varepsilon_{i+1} \le \frac{\sqrt{|X_i| \cdot \ln(4 \cdot R|_{X_i})}}{|X_i|}$$

Since $(R|_{X_i}) \leq |X_i|^d$

$$\varepsilon_{i+1} \le \frac{\sqrt{|X_i| \cdot \ln(4 \cdot |X_i|^d)}}{|X_i|}$$

For some constant c

$$\varepsilon_{i+1} \le \sqrt{\frac{c \cdot d \cdot \ln(|X_i|)}{|X_i|}}$$

Notice that X_t is a δ -approximation for (X, R) where $\delta = \varepsilon_1 + \dots + \varepsilon_t$. Since the bounds on ε_i are geometrically increasing, we can bound the total error by a constant times the largest (last) error term. Thus, for absolute constants c, c''

$$\delta \le c'' \cdot \sqrt{\frac{c \cdot d \cdot \ln(|X_{t-1}|)}{|X_{t-1}|}}$$

The RHS will be at most ε provided $|X_{t-1}| \ge \alpha \cdot \frac{d}{\varepsilon^2} \ln(d/\varepsilon)$ for some constant α . We simply choose t to be the first integer for which $X_t < \alpha \cdot \frac{d}{\varepsilon^2} \ln(d/\varepsilon)$. X_t is thus an $\varepsilon - approximation$.

We claim, however that we can do slightly better than this. The following claims are left as **homework** exercises.

Claim 3.2 If A is an $\varepsilon/2$ -approximation for (X,R) and A' is an $\varepsilon/2$ -net for $(A,R|_A)$ then A' is an ε -net for (X,R).

Claim 3.3 (X,R) with VC-dimension d has an ε -net of size $O(d/\varepsilon \ln(d/\varepsilon))$

3.2 ε -net theorem and the double sampling proof

Theorem 3.4 (ε -net theorem, proved by Haussler-Welzl in '87) Suppose (X,R) has VC-dimension $2 \le d < \infty$, and suppose $0 < \varepsilon < 1/2$. Let N be a random sample of X of size $c \cdot d/\varepsilon \ln(d/\varepsilon)$ where c is a large constant. Then N is an ε -net with $\Pr \ge 1/2$.

Preliminaries Let $r=1/\varepsilon, s=c\cdot d\cdot r\cdot \ln(r)$. We may assume that each $r'\in R$ has $>\varepsilon |X|$ elements. Let E_0 denote the event that $\exists r'\in R$ such that $N\cap r'=\phi$. Our goal is to show that $\Pr[E_0]<1/2$. Suppose that we pick another sample M of size s using the same sampling process. Let k=s/2r. Let E_1 denote the event that $\exists r'\in R$ such that $N\cap r'=\phi$ and $|M\cap r'|\geq k$. Since $E_1\subseteq E_0$, this means that $\Pr(E_1)\leq \Pr(E_0)$. We claim that

Claim 3.5 $\Pr[E_0] \le 2 \Pr[E_1]$.

Proof: Lets condition on N. It suffices to show that

$$\Pr[E_0|N] \le 2\Pr[E_1|N]$$

First suppose that N is an ε -net (this means that $N \cap r' \neq \phi \ \forall r' \in R$). Then, clearly $\Pr[E_0|N] = 0$ and $\Pr[E_1|N] = 0$. Thus $\Pr[E_0|N] \leq 2\Pr[E_1|N]$.

Now, suppose that N is an ε -net (this means that $\exists r' \in R$ such that $N \cap r' = \phi$). Clearly, $\Pr[E_0|N] = 1$. We need to show that:

$$\Pr[E_1|N] \ge \Pr[|M \cap r| \ge k] \ge 1/2$$

Let $Y_i = 1$ if the i^{th} sample in M belongs to r' and 0 otherwise. Since $|r'| > \varepsilon |X|$, $E[Y_i] = \Pr[Y_i = 1] \ge 1/r = \varepsilon$.

Let $Y = \sum_{i=1}^{s} Y_i$. Note that $Y = |M \cap r'|$. By linearity of expectations, $E[Y] = \sum_{i=1}^{s} E[Y_i] \ge s/r = 2k$. As a homework problem, argue using Chebyshev's inequality that $\Pr[\mathbf{Y} \le \mathbf{k}] < 1/2$. This means that $\Pr[E_1|N] \ge 1/2$. Thus $\Pr[E_0|N] \le 2\Pr[E_1|N]$. This completes the proof of Claim 6.1.

3.2.1 Double sampling:

Think of N and M as being produced in the following way:

- Pick a sample $A \subseteq X$ of size 2s.
- Pick a random subset of size s from A to form N.

• Let
$$M = A \setminus N$$

To show that $\Pr[E_1] \leq 1/4$, we fix A and show that the probability $\Pr[E_1|A] \leq 1/4$. More specifically, for each $r' \in R$, we will bound the following probability:

$$\alpha \equiv \Pr\left[N \cap r' = \phi \land |M \cap r'| \ge k|A\right]$$

Suppose that $|A \cap r'| < k$, then α is simply 0. Now, suppose that $|A \cap r'| \ge k$. Then,

$$\alpha \le \left(1 - \frac{k}{2s}\right) \cdot \left(1 - \frac{k}{2s - 1}\right) \dots \left(1 - \frac{k}{2s - s + 1}\right)$$

$$\alpha \le \left(1 - \frac{k}{2s}\right)^s \le \exp\left(-\frac{k}{2s} \cdot s\right)$$

$$\alpha \le \exp(-k/2) = \frac{1}{\exp(\frac{c \cdot d}{4} \cdot \ln(r))} = \frac{1}{r^{cd/4}}$$

Now,

$$\Pr[E_1|A] = \Pr\left[\bigcup_{r'\in R} [N \cap r' = \phi \land |M \cap r'| \ge k|A]\right]$$

$$\Pr[E_1|A] = \Pr\left[\bigcup_{b\in R|A} \bigcup_{r'\in R: A \cap r'=b} [N \cap r' = \phi \land |M \cap r'| \ge k|A]\right]$$

Using the union bound,

$$\Pr[E_1|A] \le \sum_{b \in R|A} \Pr\left[\bigcup_{r' \in R: A \cap r' = b} [N \cap r' = \phi \land |M \cap r'| \ge k|A] \right]$$

For a specific b, the terms inside the union just refer to the same event. Thus we can use the bound from above,

$$\Pr[E_1|A] \le \sum_{b \in R|A} \frac{1}{r^{cd/4}} \le \phi_d(2s) \cdot \frac{1}{r^{cd/4}}$$

$$\Pr[E_1|A] \le \left(\frac{2s \cdot e}{d}\right)^d \cdot \frac{1}{r^{cd/4}}$$

$$\Pr[E_1|A] \le (2cre\ln(r))^d \cdot \frac{1}{r^{cd/4}}$$

We can chose c to be large enough so that,

$$\Pr[E_1|A] < 1/4$$

This means that $\Pr[E_1] \leq 1/4$. From Claim 6.1, $\Pr[E_0] \leq 2\Pr[E_1] \leq 1/2$. This completes the proof of the ε -net theorem.

3.2.2 Paper topics:

Applications of ε -nets to set cover, load balancing and cuttings.