
22C : 231 (CS : 5350 : 0001) Design and Analysis of Algorithms

Homework 5: Network Flow

The homework has two types of problems – reinforcement problems and regular prob-
lems. For the reinforcement problems, we are not concerned with originality in coming up
with the solution, but rather with how well you write up the solution. You can get help
in coming up with the solution – from friends, online, etc. – but understand the solution
and explain it in your own words. For the regular problems, the only type of help you can
get is collaboration with classmates, and discussion with the instructor or TA. No record or
notes, electronic or written, should be taken from such collaborations. For these problems
we do care about originality in coming up with the solution.

The homework is worth 10 points (each problem is worth 2), and is due in class on
Tuesday, April 30. For the purpose of mastering the material, it is highly recom-

mended that you make a serious effort to solve even the reinforcement problems

by yourself.

Reinforcement Problems

1. Exercise 3 of Chapter 7. (Use residual network computation as much as possible to
get some practice on that.)

2. Exercise 8 of Chapter 7.

3. Exerices 11 of Chapter 7.

4. Exercise 15 of Chapter 7.

Regular Problems

1. We are given a directed network G with integer capacities on its edges, and two
designated nodes s and t in G. In this problem, we consider another variant of the
Ford-Fulkerson algorithm (Sections 7.1 and 7.2) for computing a maximum s-t flow in
G. Given some flow f in G, consider the residual network Gf . For a path P from s to
t in Gf , we define its bottleneck capacity bottleneck(P ) to be the minimum residual
capacity of any edge in P .

(a) Describe an efficient algorithm that, given Gf , computes a path from s to t in
Gf with maximum bottleneck capacity (or reports that no path from s to t in
Gf exists).

(b) Suppose we modify the Ford-Fulkerson algorithm so that in each iteration, it
updates the current flow f using an s-t path of maximum bottleneck capacity
in Gf (rather than just any s-t path in Gf ). Show that the modified algorithm
terminates in O(m(1 + logD)) iterations, where m is the number of edges in G,
and D is the maximum capacity of any edge in G. (We assume that m is at least
the number of nodes in G.)

1


