
22C : 196 Computational Geometry

Homework 2

Some of the problems in this homework are adapted from the text Computational Ge-

ometry: Algorithms and Applications by de Berg et al., but I have stated such problems to
avoid issues that may come up because of using different versions. Each of the following
four problems is worth 2.5 points.

1. The first step in our O(n logn) algorithm for triangulating a simple polygon with n

vertices was to use a sweep-line approach to add diagonals going up from each of the
split vertices. These non-intersecting diagonals decompose the simple polygon into
smaller polygonal regions. Assuming that the subdivision induced by the original
simple polygon is given as a doubly conencted edge list (DCEL), and given the set of
computed diagonals, describe how we can compute a DCEL for the resulting subdivi-
sion. The running time of your algorithm should be O(n logn). Suggestion: Review
the sweep-line method for adding diagonals. Then think of some concrete algorithm
for computing the DCEL. Analyze its running time, and if it is too high, ask yourself
how it can avoid doing wasteful work.

In the textbook description of the DCEL, a face remembers one half-edge from each
component of its boundary. In our case, the boundary of each face had only one
component, so a face needs to remember only one half-edge. In class, we worked with
such a simplified DCEL.

2. Suppose that after this first step we have decomposed the original simple polygon
(with n vertices) into k sub-polygons, and suppose that the i-th sub-polygon has
mi ≥ 3 vertices. Show that

∑k
i=1

mi logmi = O(n logn).

3. This question concerns our first slow algorithm for computing the convex hull of a
set P of n points in the plane. Assume that the points are given as an array P [1..n]
where P [i] hold the i-th point. Suppose the algorithm has computed a list consisting
of (clockwise-oriented) convex hull edges but it has not figured out the order in which
these edges occur on the convex hull. Each computed edge is of the from (i, j), which
means that the directed segment from P [i] to P [j] is an edge of the convex hull as we
traverse it clockwise. Describe an O(n) algorithm for computing a correct ordering of
these edges.

In the figure, for example, we may be given the list

〈(5, 7), (6, 1), (1, 5), (7, 6)〉.

A correct ordering of these edges is

〈(1, 5), (5, 7), (7, 6), (6, 1)〉.

1



1 2

3

4

5

7

6

Figure 1: Problem 3

4. Show that the point r = (rx, ry) lies to the left of the directed line from p = (px, py)
to q = (qx, qy) if and only if the expression

(qx − px)(ry − py)− (rx − px)(qy − py)

is positive.

You are welcome to solve the following problems as well, but you will not receive any
credit for doing this.

1. Suppose that we have a subroutine ConvexHull available for computing the convex
hull of a set of points in the plane. Its output is a list of convex hull vertices, sorted
in clockwise order. Now let S = {x1, x2, . . . , xn} be a set of n integers. Show that S
can be sorted in O(n) time plus the time needed for one call to ConvexHull.

This reduction shows that computing the convex hull takes Ω(n log n) in those models
of computation where sorting takes Ω(n log n) time.

2. The stabbing number of a triangulated simple polygon is the maximum number of
diagonals intersected by a line segment interior to the polygon. Give an algorithm
that takes as input any n-vertex convex polygon and computes a triangulation that
has stabbing number O(logn).

The homework is to be turned in into the dropbox Homework2 on ICON. I would prefer
if you type in the text, but hand-drawn figures are okay. The homework is due by 11:59
pm on Feb 21st.

On the question of collaboration and seeking help, I recommend thinking about each
problem for 30 minutes first (not counting time spent getting familiar with basic material
covered in class). You may collaborate with classmates after that, but definitely avoid
looking at completely written solutions of others. Explain the final solution in your own
words, and do not turn in a solution that you don’t understand.

2


