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ABSTRACT

We consider variants of the following multi-covering problem with
disks. We are given two point sets Y (servers) and X (clients) in
the plane, and a coverage function κ : X → N . Centered at
each server is a single disk whose radius we are free to set. The
requirement is that each client x ∈ X be covered by at least κ(x)
of the server disks. The objective function we wish to minimize is
the sum of the areas of the disks.

We present a polynomial time algorithm for this problem achiev-
ing an O(1) approximation.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Geometric Prob-
lems and Computations

General Terms

Algorithms, Theory

Keywords

Approximation Algorithm, Geometric Set Cover

1. INTRODUCTION
We begin with the statement of the problem studied in this ar-

ticle. We are given two point sets Y (servers) and X (clients) in
the plane, and a coverage function κ : X → N. An assignment
r : Y → R

+ of radii to the points in Y corresponds to “building”
a disk of radius ry centered at each y ∈ Y . For an integer j ≥ 0,
let us say that a point x ∈ X is j-covered under the assignment if
x is contained in at least j of the disks, i.e.

|{y ∈ Y | ||y − x||2 ≤ ry}| ≥ j

The goal is to find an assignment that κ(x)-covers each point x ∈
X and minimizes π ∗

∑

y∈Y
r2y , the sum of the areas of the disks.
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We call this the non-uniform minimum-cost multi cover problem
(non-uniform MCMC problem).

Abu-Affash et al [1] consider the version of this problem where
κ(x) = k, ∀x ∈ X , where k > 0 is some given integer. We
will refer to this as the uniform MCMC problem, or following [1],
simply as the MCMC problem. We are interested in designing a
polynomial time algorithm that outputs a feasible solution (a κ-
cover) whose cost is at most some factor f ≥ 1 times the cost of an
optimal solution. We call such an algorithm an f -approximation,
and it is implicit that the algorithm is actually polynomial-time.

Related Work.
The (uniform) MCMC problem was considered in two recent

papers, motivated by fault-tolerant sensor network design that op-
timizes energy consumption. Abu-Affash et al. [1] gave an O(k)
approximation for the problem using mainly geometric ideas. Bar-
Yehuda and Rawitz [3] gave another algorithm that achieves the
same approximation factor of O(k), using an analysis based on the
local ratio technique. The central question that we investigate in
this article is whether an approximation guarantee that is indepen-
dent of k is possible.

There is a considerable amount of work on clustering and cov-
ering problems related to the MCMC problem, and we refer the
reader to the previous papers for a detailed survey [1, 3]. Here,
we offer a view of some of that work from the standpoint of tech-
niques that may be applicable to the problem at hand. For the case
k = 1 of the problem, constant factor approximations can be ob-
tained using approaches based on linear programming, and in par-
ticular, the primal-dual method [7, 10]. The O(k) approximation
of Bar-Yehuda and Rawitz [3] for k > 1 can be situated in this line
of work.

There has been some recent work on the geometric set multi-
covering problem [8, 2]. In particular, the recent work of Bansal
and Pruhs [2] addresses the following problem. We are a given
a set of points in the plane, a set of disks each with an arbitrary
non-negative weight, and an integer k. The goal is to pick a subset
of the disks so that each of the given points is covered at least k
times. The objective function we want to minimize is the sum of
the weights of the chosen disks. Bansal and Pruhs [2] give an O(1)
approximation for the problem, building on techniques developed
for the case k = 1 [13, 6].

It would seem that the problem considered in this paper can be
reduced to the problem solved by Bansal and Pruhs: for each y ∈ Y

and x ∈ X , add a disk centered at y with radius ||x − y||2, and
let X be the set of points that need to be covered. The reason
this reduction does not work is that we have to add an additional



constraint saying that we can use only one disk centered at each
y ∈ Y . Notice that this additional constraint is not an issue for
the case k = 1, since here if the returned solution uses two disks
centered at the same y ∈ Y , we can simply discard the smaller one.

In the geometric set cover problems considered by [8, 13, 6, 2],
the input disks are “immutable”, and the complexity of the prob-
lem stems from the combinatorial geometry of the disks. For the
MCMC application, it would be more fruitful to consider geometric
set multi-cover problems where the algorithm is allowed to slightly
enlarge the input disks. This version of covering with k = 1 is
considered by Har-Peled and Lee [11]. For k > 1, however, we
still have the above-mentioned difficulty of reducing MCMC to a
set multi-cover problem.

The case k = 1 of our MCMC problem actually admits a polyno-
mial time approximation scheme (PTAS) using dynamic program-
ming on top of randomly shifted quad-trees [9, 5]. This was shown
by the work of Bilo et al. [4], following the work of Lev-Tov and
Peleg [12] for a related problem. The difficulty with extending
these results for k = 1 to general k is that the “density” of the
solution grows with k, and therefore the number of sub-problems
that the dynamic program needs to solve becomes exponential in k.
It is conceivable that further discretization tricks [11] can be em-
ployed to get around this difficulty, but we have not succeeded in
this effort. On the other hand, we are also not aware of any hardness
result that rules out a PTAS.

Our Results.
Using a simple geometric approach, we obtain an O(1) approx-

imation for the uniform MCMC problem. Thus our main contri-
bution is the demonstration that we can obtain an approximation
bound that is independent of k for the uniform MCMC problem.

Our technique is closely related to the geometric approach of
Abu-Affash et al. [1] and builds on their ideas. For each x ∈ X ,
consider the disk δ(yk(x), ||yk(x)−x||2) of radius ||yk(x)−x||2
centered at yk(x), the k-th nearest neighbor of x in Y . The work
in [1] revolves around a carefully chosen subset of this family of
disks. This subset of disks, which are pairwise disjoint, are called
primary disks by [1]. They show that the sum of the areas of the
primary disks is a lower bound on the cost of any solution, and that
the cost of the solution output by their algorithm is at most k times
this.

Our approach also uses primary disks, but differently. Our al-
gorithm recursively computes a (k − 1)-cover and then extends it
to a k cover. We relate the cost of this extension to the cost of the
primary disks. To upper bound the cost of our solution, we de-
compose the optimal k-cover into a (k − 1)-cover and a residual
set whose cost upper bounds the cost of the primary disks. We ex-
pect that these insights will prove useful, particularly in the context
of some non-trivial extensions of our work that we mention in the
concluding section.

Our algorithm and approximation guarantee of O(1) works for
the non-uniform MCMC problem as well. We therefore present our
work in this slighly more general setting.

Organization.
In Section 2, we describe our algorithm for the non-uniform

MCMC problem and its analysis. For clarity, the reader may find it
useful to keep the uniform MCMC problem in mind during a first
perusal. In Section 3, we discuss variants of the problem that our
approach addresses. We also mention other intriguing variants that
our work leaves unresolved.

2. COMPUTING A COVERING FOR THE

NON-UNIFORM MCMC PROBLEM
For convenience, we solve the variant of the non-uniform MCMC

problem where we have l∞ disks rather than l2 disks. Our input is
two point sets Y and X in R

2 and a coverage function κ : X →
N ∪ {0}. (It will be useful to allow κ(x) to be 0 for some x ∈ X .)
We also assume that κ(x) ≤ |Y | for each x ∈ X , for otherwise
there is no feasible solution.

We describe an algorithm for assigning a radius ry ≥ 0 for each
y ∈ Y , with the guarantee that for each x ∈ X , there are at least
κ(x) points y ∈ Y such that the l∞ disk of radius ry centered at y
contains x. In other words the guarantee is that for each x ∈ X ,

|{y ∈ Y | ||x− y||∞ ≤ ry}| ≥ κ(x)

Our objective is to minimize the sum of the areas of the disks,
that is, 4 ∗

∑

y∈Y
r2y . For this optimization problem, we will show

that our algorithm outputs an O(1) approximation. Clearly, this
also gives an O(1) approximation for the original problem, where
distances are measured in the l2 norm.

Terminology.
Before proceeding, we define some of the terms that will be used

extensively in the remainder of this section. We will use || · || to
denote the l∞ norm.

For each x ∈ X , fix an ordering of the points in Y that is non-
decreasing in terms of l∞ distance to x. For 1 ≤ j ≤ |Y |, let
yj(x) denote the j-th point in this ordering. In other words, yj(x)

is the j-th closest point in Y to x. For brevity, we denote yκ(x)(x)
by yκ(x).

Given an assignment of radius ry to each y ∈ Y , we will say
that a point x ∈ X is j-covered if at least j disks cover it, that is,

|{y ∈ Y | ||x− y|| ≤ ry}| ≥ j.

We will sometimes say that x is κ-covered to mean that it is κ(x)-
covered. Similarly, if we have a assignment of radii to each y ∈ Y

such that for a set of points P ⊆ X , every point x ∈ P is covered
by at least κ(x) disks, we say that P is κ-covered.

Let δ(p, r) denote the l∞ disk of radius r centered at p.

2.1 The Algorithm
The procedure Cover(X,Y, κ) computes an assignment of radii

so that each point x ∈ X is κ(x)-covered. This algorithm is recur-
sive, and in the base case we have κ(x) = 0 for each x ∈ X . In the
base case, the radius ry is assigned to 0 for each y ∈ Y . Otherwise,
we define

κ
′(x) = max{0, κ(x)− 1}, for each x ∈ X,

and recursively call Cover(X,Y, κ′) to compute an assignment that
κ′(x)-covers each x ∈ X . We then compute X ′ ⊆ X , the set of
points that are not κ(x)-covered. The goal of the while-loop is to
increase some of the ry to ensure that each x ∈ X ′ is also κ(x)-
covered.

To do this, we find the point x ∈ X ′ that maximizes the distance
to its κ(x)-th nearest neighbor in Y . We add x and some “nearby”
points in X ′ to a cluster XCx. More precisely, XCx consists of all
x′ ∈ X ′ such that δ(yκ(x), ||x − yκ(x)||) and δ(yκ(x′), ||x′ −
yκ(x′)||) intersect. The set YCx contains, for each x ∈ XCx, the
κ(x) nearest neighbors of x in Y . For purposes of analysis, we add
x to a set X as well. Figure 1 demonstrates how x is chosen, along
with corresponding members of XCx.



Algorithm 1 Cover(X,Y, κ)

1: if ∀x ∈ X,κ(x) = 0 then

2: Assign ry ← 0 for each y ∈ Y , and return.
3: Define κ′(x) as follows:

∀x ∈ X,κ
′(x) =

{

0, if κ(x) = 0

κ(x)− 1, if κ(x) > 0

4: Recursively call Cover(X,Y, κ′).
5: Let X ′ = {x ∈ X | x is not κ(x)-covered }
6: Let X ← ∅.
7: while X ′ 6= ∅ do

8: Let x← argmaxx′∈X′ ||x′ − yκ(x′)||

9: X ← X ∪ {x}.
10: Let XCx ← ∅, YCx ← ∅.
11: for all x′ ∈ X ′ do

12: if δ(yκ(x), ||x− yκ(x)||) and δ(yκ(x′), ||x′ − yκ(x′)||) intersect then

13: XCx ← XCx ∪ {x
′}.

14: YCx ← YCx ∪ {y
1(x′), y2(x′), . . . , yκ(x′)}.

15: Let YC′

x ⊆ YCx be a set of at most four points such that
⋂

y∈YC′

x

δ(y, ry) =
⋂

y∈YC
x

δ(y, ry).

16: For each y ∈ YC′

x, increase ry by the smallest amount that ensures XCx ⊆ δ(y, ry).
17: Remove from X ′ any points x that are κ(x)-covered.

b

a

c

y1(b)

y1(a)

y1(c)

d

y1(d)

Figure 1: Snapshot of Cover(X,Y, κ) with κ(x) = 1 for each

x ∈ X . At this stage, ry = 0 for each y ∈ Y . The

distance between b and its closest server y1(b) is maximum,

hence it is picked as x in the first iteration of the while loop.

The primary disk δ(y1(b), ||b − y1(b)||) intersects the disks

δ(y1(a), ||a− y1(a)||) and δ(y1(c), ||c− y1(c)||), causing a and

c to be included in XCx in addition to b.

Next, we identify a set YC′

x ⊆ YCx of at most 4 points such that

⋂

y∈YC′

x

δ(y, ry) =
⋂

y∈YC
x

δ(y, ry).

Why does such a YC′

x exist? If, on the one hand, the intersection
of disks

⋂

y∈YC
x

δ(y, ry) is empty, then Helly’s Theorem tells us
that there are three disks (or maybe even two) whose intersection
is empty. On the other hand, if the intersection

⋂

y∈YC
x

δ(y, ry) is
non-empty, then it is a rectangle (as these are l∞ disks) and there-
fore equal to the intersection of four of the disks.

We enlarge the radius ry of each y ∈ YC′

x by the minimum
amount needed to ensure that XCx ⊆ δ(y, ry). We argue that after
this each point in XCx is κ-covered. To see why, consider any x′ ∈
XCx. Notice that |YCx| ≥ κ(x′), since the κ(x′) nearest neighbors
of x′ are included in YCx. Thus before the enlargement, x′ does
not belong to

⋂

y∈YC
x

δ(y, ry). (Recall that no point in XCx was

κ-covered.) Therefore, x′ does not belong to
⋂

y∈YC′

x

δ(y, ry). It

follows that there is at least one y ∈ YC′

x such that δ(y, ry) did
not contain x′ before the enlargement. As a consequence of the
enlargement, δ(y, ry) does contain x′. Since x′ was (κ(x′) − 1)-
covered before the enlargement, it is now κ(x′)-covered.

After increasing ry for y ∈ YC′

x as stated, we discard from X ′

all points that are now κ-covered. The discarded set contains XCx

which has at least the one point x; so the iteration of the while loop
makes progress. We go back and iterate the while loop with the
new X ′.

It is clear that when Cover(X,Y, κ) terminates, each point x ∈
X is κ(x)-covered.

2.2 Approximation Ratio
To bound the approximation ratio, we begin by obtaining a han-

dle on the increase in the cost (the objective function) in going from
a κ′-cover to a κ-cover. For this, we need to focus on the set X ,
to which the while loop adds the point x that it chooses in each
iteration.

LEMMA 1. The increase in the objective function 4 ∗
∑

y∈Y
r2y



from the time Cover(X,Y, κ′) completes to the time Cover(X,Y, κ)
completes is O(

∑

x′∈X
||x′ − yκ(x′)||2).

PROOF. Let us fix an x ∈ X , and focus on the iteration when
x was added to X . Notice that there is exactly one such iteration,
since x is removed from X ′ in the iteration it gets added to X .

We will argue that the increase in cost during that iteration is
O(||x− yκ(x)||2), thus completing the proof. The increase in cost
is due to the increase in the radii of ry for y ∈ YC′

x, as no other
radius is increased. For each such y, it suffices to show that if
ry is increased during that iteration, then the increase in 4r2y is
O(||x− yκ(x)||2).

To show this, we make two claims.

CLAIM 1. For any x′ ∈ XCx, we have

||yκ(x)− x
′|| ≤ 3 ∗ ||yκ(x)− x||

PROOF. Recall that x′ is in XCx because the disks δ(yκ(x), ||x−
yκ(x)||) and δ(yκ(x′), ||x′ − yκ(x′)||) intersect. Since x is the
point in X ′ that maximizes the distance to the κ(x)-th nearest point
in Y , we have ||x′ − yκ(x′)|| ≤ ||x− yκ(x)||. Thus,

||yκ(x)− y
κ(x′)|| ≤ ||x′ − y

κ(x′)||+ ||x− y
κ(x)||

≤ 2 ∗ ||x− y
κ(x)||

from which

||yκ(x)− x
′|| ≤ ||yκ(x)− y

κ(x′)||+ ||yκ(x′)− x
′||

≤ 3 ∗ ||yκ(x)− x||

CLAIM 2. For any y′ ∈ YCx, we have

||yκ(x)− y
′|| ≤ 4 ∗ ||yκ(x)− x||

PROOF. The point y′ belongs to YCx because there is an x′ ∈
XCx for which y′ = yj(x′) for some 1 ≤ j ≤ κ(x′). With this x′,
we have

||yκ(x)− y
′|| ≤ ||yκ(x)− x

′||+ ||x′ − y
κ(x′)||

≤ 3 ∗ ||yκ(x)− x||+ ||yκ(x)− x||.

Fix a y ∈ YC′

x. If ry was increased in this iteration, it now
equals ||y − x′|| for some x′ ∈ XCx. By the above two claims,

||y − x
′|| ≤ ||y − y

κ(x)||+ ||yκ(x)− x
′||

≤ 7 ∗ ||yκ(x)− x||.

Thus the increase in the quantity 4 ∗
∑

y∈Y
r2y (in the iteration of

the while loop under consideration) is O(||yκ(x)−x||2), finishing
the proof of the lemma.

Following [1], let us refer to the set of disks {δ(yκ(x), ||x −
yκ(x)||) | x ∈ X} as the set of primary disks. The above lemma
has shown that the increase in cost in going from a κ′-cover to a
κ-cover is bounded by a constant times the sum of the areas of the
primary disks.

We now observe another property of the primary disks, one that
is also used by [1].

LEMMA 2. Any two primary disks are disjoint.

PROOF. Consider the iteration when an x is added to X . At
this point, if there is a point x′ ∈ X ′ such that the primary disk
δ(yκ(x), ||x− yκ(x)||) and the disk δ(yκ(x′), ||x′ − yκ(x′)||) in-
tersect, then x′ gets added to XCx and subsequently gets removed
from X ′. It follows that there is no possibility that x′ gets added to
X in a subsequent iteration.

We now bound the approximation ratio of our algorithm.

THEOREM 1. Let r′ : Y → R
+ be any assignment of radii to

the points in Y under which each point x ∈ X is κ(x)-covered.

Then the cost of the output of Cover(X,Y, κ) is at most c ∗ 4 ∗
∑

y∈Y
r′y

2
, where c > 0 is an absolute constant.

PROOF. Our proof is by induction on maxx∈X κ(x). For the
base case, where κ(x) = 0 for each x ∈ X , the claim in the
theorem clearly holds for any c > 0.

Let D = {δ(y, r′y) | y ∈ Y } be the set of disks corresponding to
the assignment r′. We can view such an assignment as a collection
of disks, and vice versa. In particular, we say that D κ-covers each
point in X . Our proof strategy is to show that there is a subset
Dκ ⊆ D such that

1. The cost increase incurred by Cover(X,Y, κ) in going from
the κ′-cover to the κ-cover is at most c times the sum of the
areas of the disks in Dκ.

2. The set of disks D \Dκ κ′(x)-covers any point x ∈ X .

By the induction hypothesis, the cost of the κ′-cover computed
by Cover(X,Y, κ′) is at most c times the sum of the areas of the
disks in D\Dκ. As the increase in cost incurred by Cover(X,Y, κ)
in turning the κ′-cover to a κ-cover is at most c times the sum of
the areas of ths disks in Dκ, the theorem follows.

We first compute Dκ from D, and then show that it has the above
two properties. Consider the set of primary disks {δ(yκ(x), ||x −
yκ(x)||) | x ∈ X} computed by our algorithm in the process of
going from a κ′-cover to a κ-cover. Let largest(x) be the largest
disk from D that contains x. Since at least κ(x) disks from D

contain x, we know that the radius of largest(x) is at least ||x −
yκ(x)||, the radius of the primary disk δ(yκ(x), ||x − yκ(x)||).
Let

D
′

κ = {largest(x) | x ∈ X}.

Sort the disks in D′

κ by decreasing (non-increasing) radii. Let
B ← ∅ initially. For each disk d ∈ D′

κ in the sorted order, per-
forming the following operation: add d to B if d does not intersect
any disk already in B.

Let Dκ be the set B at the end of this computation. Since no two
disks in Dκ intersect, and D κ-covers any point in X , it follows
that D \Dκ κ′-covers any point in X . This establishes Property 2
of Dκ.

To show that the cost increase incurred by Cover(X,Y, κ) in
going from the κ′-cover to the κ-cover is at most c times the sum
of the areas of the disks in Dκ (Property 1), it suffices, by Lemma
1, to show that the sum of the areas of the primary disks is at most
c′ times the sum of the areas of the disks in Dκ. Here, c′ > 0 is an
absolute constant.

For this, let us charge each primary disk δ(yκ(x), ||yκ(x)−x||)
to some disk in Dκ that is (a) at least as large as largest(x), and
(b) intersects largest(x). Notice that such a disk in Dκ does indeed
exist.

Fix a disk δ(y, r′y) ∈ Dκ and consider a primary disk δ(yκ(x),
||yκ(x) − x||) that is charged to it. Note that δ(y, r′y) intersects
largest(x) and is at least as large; and largest(x) intersects δ(yκ(x),



r′y
y

largest(x)

yκ(x)

x

5r′y

Figure 2: The disk δ(y, r′y) in Dκ intersects the disk largest(x),
which is at least as large as the primary disk δ(yκ(x), ||yκ(x)−
x||). All 3 disks are contained inside the disk δ(y, 5r′y), which

is not drawn to scale in this figure.

||yκ(x) − x||) and is at least as large. Thus the primary disk
δ(yκ(x), ||yκ(x) − x||) is contained in the larger disk δ(y, 5r′y).
This is illustrated in figure 2.

Since the primary disks are pair-wise disjoint (Lemma 2), and
the primary disks charged to δ(y, r′y) are contained in δ(y, 5r′y),
it follows that the sum of the areas of the primary disks charged
to δ(y, r′y) is at most the area of δ(y, 5r′y), which equals 25 times
the area of δ(y, r′y). We conclude that the sum of the areas of the
primary disks is at most c′ times the sum of the areas of the disks
in Dκ, where c′ = 25.

This establishes Property 1, and completes the proof of the theo-
rem.

We conclude with a statement of the main result of this article.

THEOREM 2. Given point sets X and Y in the plane and κ :
X → {1, 2, . . . , |Y |}, the algorithm Cover(X,Y, κ) runs in poly-

nomial time and computes a κ-cover of X with cost at most O(1)
times that of the optimal κ-cover.

3. CONCLUSIONS
Our result generalizes to give O(1) approximations for the fol-

lowing variants of MCMC.

1. X and Y are points in R
d, where d is any constant, and we

want to minimize the sum of the d-dimensional volumes of
the balls. The constant in the approximation factor has an
exponential dependence on d.

2. X and Y are points in the plane, and we want to find an
assignment r : Y → R

+ under which each point x ∈
X is κ(x)-covered. The quantity we wish to minimize is
∑

y∈Y
rαy , where α ≥ 2 is a constant.

The algorithm and analysis generalize along the expected
lines. The only new observation we need is towards the end
of the proof of Theorem 1. After observing that the primary

disks charged to δ(y, r′y) are contained in δ(y, 5r′y), and are
disjoint, we conclude that the sum of the squares of the radii
of the primary disks charged to δ(y, r′y) is at most the square
of the radius of δ(y, 5r′y). This however implies that the sum
of the α-th powers of the radii of the primary disks charged to
δ(y, r′y) is at most the α-th power of the radius of δ(y, 5r′y).
Notice that we need α ≥ 2 for this.

It would be interesting to generalize our result to obtain O(1)
approximations for the following variants of the uniform MCMC.

1. X , Y , and k are given as in MCMC, but the objective we
wish to minimize is

∑

y∈Y
ry .

2. X and Y are points in an arbitrary metric space, and we are
given an integer k. We want to find an assignment r : Y →
R

+ under which each point in X is k-covered. The objective
we wish to minimize is (say)

∑

y∈Y
ry .

When k = 1, well known algorithms based on the primal
dual method give an O(1) approximation [7, 10]. These re-
sults and the work reported here leads us to imagine that an
O(1) approximation is possible for general k > 1.

For both the problems mentioned above, the recent work of [3]
gives an O(k) approximation. For the non-uniform versions, their
approximation guarantee is O(maxx∈X κ(x)).
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