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ABSTRACT
In the Euclidean bipartite matching problem, we are given a set R
of “red” points and a set B of “blue” points in

� d where |R| =
|B| = n, and we want to pair up each red point with a distinct
blue point so that the sum of distances between the paired points is
minimized. We present an approximation algorithm that given any
parameter 0 < ε < 1 runs in O(n1+ε) expected time and returns
a matching whose expected cost is within a multiplicative factor
O(log(1/ε)) of the optimal. The dimension d is considered to be a
fixed constant.

Categories and Subject Descriptors: F.2.2 [Theory of Computa-
tion]: Nonnumerical Algorithms and Problems—geometrical prob-
lems and computations; G.2.1 [Discrete Mathematics]: Combina-
torics—combinatorial complexity

General Terms: Theory, Combinatorial Optimization

Keywords: Matching, approximation algorithms

1. Introduction
In the Euclidean bipartite matching problem, we are given a set R
of “red” points and a set B of “blue” points in

� d where |R| =
|B| = n, and we want to pair up each red point with a distinct blue
point so that the sum of distances between the paired points is min-
imized. This is a well known geometric optimization problem that
has applications in operations research, pattern recognition, shape
matching, statistics, and VLSI.

Related work. Euclidean bipartite matching problem is a spe-
cial case of the classical bipartite matching problem in a graph.
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The first polynomial time algorithm in the graph setting is the fa-
mous “Hungarian” algorithm due to Kuhn [9]. The fastest known
implementation of this algorithm runs in O(|V |3) time on dense
graphs (see Lawler [10]) and roughly O(|E||V |) time on sparse
graphs [8], where |V | and |E| are respectively the number of ver-
tices and edges in the graph. There is a scaling algorithm due to
Gabow and Tarjan [7] that runs in O(

�
|V ||E| log(|V |N)) time,

where N is the largest weight of an edge in the graph (weights
are assumed to be integers). For the two-dimensional Euclidean
version of this problem, Vaidya [13] showed that geometry can
be exploited to get algorithms running in O(n5/2 logO(1) n) time.
Agarwal et al. [1] improved the running time for the bipartite case
to O(n2+δ), for any δ > 0. Agarwal and Varadarajan [2] gave an
(1 + ε)-approximation algorithm for this problem that returns, for
any 0 < ε < 1, a perfect matching whose cost is at most (1 + ε)

times the optimal in O((n3/2/ε2) log5(n/ε)) time. This is a geo-
metric implementation of the scaling algorithm mentioned above.
No algorithm with a better running time is known for computing
even a constant factor approximation to the optimal matching. We
restrict our attention to surveying the two-dimensional Euclidean
case because this is a good indication of the state of the art. The
best algorithms in any fixed dimension are obtained by a straight-
forward translation of the two-dimensional algorithms.

A generalization of the Euclidean bipartite matching is the so-
called transportation problem, in which we are given two sets of
points U and V in

� 2 and a positive integral demand λ(p) for each
p ∈ U ∪ V so that �

u∈U

λ(u) =

�
v∈V

λ(v).

A feasible solution to this problem is a subset M ⊆ U × V of
edges and positive integral weights w(u, v) for each (u, v) ∈ M
such that

λ(p) =

�
(p,q)∈M

w(p, q) ∀p ∈ U

λ(q) =

�
(p,q)∈M

w(p, q) ∀q ∈ V

The goal is to find a feasible solution M, w that minimizes�
(u,v)∈M

w(u, v)d(u, v).

Here d(u, v) is the Euclidean distance between u and v. The bi-
partite matching problem is a special case of the transportation
problem in which all demands are 1. Atkinson and Vaidya [4]
presented an algorithm to solve the transportation problem in time
O(k2.5 log k log N) where k = |U | + |V | and N is the maximum
demand.



The nonbipartite version of Euclidean matching, where we are
given a set P of 2n points in

� d and we want to pair up the points
into n pairs so as to minimize the sum of the distances between
paired points, is also widely studied. The first polynomial-time al-
gorithm for the graph version of this problem is the classical al-
gorithm due to Edmonds [6]. The best implementations of this
algorithm and the best scaling algorithm have running times sim-
ilar to the bipartite case. Vaidya [13] gave an algorithm for the
two-dimensional Euclidean version of this problem that runs in
O(n5/2 logO(1) n) time. Varadarajan [14] later gave a divide-and-
conquer algorithm that runs in O(n3/2 logO(1) n) time. For the ap-
proximate version of this problem, Vaidya [12] gave an algorithm
that, for any ε > 0, runs in roughly O(n3/2/ε3) time and returns
a (1 + ε)-approximate perfect matching. In a seminal paper that
gave improved algorithms for many geometric optimization prob-
lems like the TSP, Arora [3] gave a Monte-Carlo algorithm that runs
in O(n logO(1/ε) n) time and returns a (1+ε)-approximate match-
ing with high probability. Building on his approach, Rao and Smith
[11] give a Monte-Carlo algorithm that runs in O(n log n) time
and produces (with probability atleast 1/2) a matching whose cost
is within a constant factor of the optimal. Agarwal and Varadara-
jan [2], also building on Arora’s approach, gave a Monte Carlo
algorithm that returns a (1 + ε)-approximate matching with proba-
bility at least 1/2 in O((n/ε3) log6 n) time.

From the discussion of the state of the art, it appears that bipar-
tite matching is harder than nonbipartite matching in the geometric
setting. This seems counterintuitive at first but a little reflection re-
veals that the bipartite case can be more “non-local” than the nonbi-
partite case. Indeed the near-linear approximation algorithm due to
Arora [3], which is based on a hierarchical decomposition of a point
set by a randomly shifted quadtree, does not extend to the bipartite
case. One source of difficulty is that when a cell of the quadtree
is divided into four cells, the number of edges of even an approxi-
mate matching that cross the subdividing lines may be much larger
than a constant or log n. This makes the number of subproblems in
the natural dynamic programming approach too large, and it is not
clear how to get around this difficulty.

Nevertheless the general feeling among researchers has been that
a near-linear time algorithm that gives at least a constant-factor ap-
proximation must exist, and that the subdivision due to a randomly
shifted quadtree should be a useful tool.
Our results. In this paper, we make substantial progress towards
realizing the above intuition: we give a Monte Carlo algorithm for
the two-dimensional bipartite matching problem that, for any 0 <
ε < 1, runs in O(n1+ε) expected time and returns a matching
whose expected cost is within O(log(1/ε)) of the optimal. Thus
the closer our asymptotic running time gets to O(n), the larger is
the constant in the constant-factor approximation we get.

Our algorithm uses a variant of the idea of the randomly shifted
quadtree. When a cell of the quadtree is subdivided into “subcells”,
we compute a matching in which the number of edges that “cross”
a subcell is the minimum number that needs to in any matching
(due to an imbalance between the number of red and blue points
in the subcell). We resolve the question of which points of the
subcell are to be matched outside the subcell by picking an arbitrary
subset of the right size from the points of the predominant color.
We bound the expected increase in the cost of the matching that we
compute using the fact that we are using a probabilistic partition.
To ensure that the overall increase in cost is not too much we make
sure that the number of levels in the quadtree is O(log(1/ε)). To
do this we allow a cell of the quadtree to be partitioned into a large
number of subcells, not just 4. The size of the subproblems in the
“merge” step may be quite large but we reduce this problem to a

small-sized transportation problem. Our analysis of the cost of the
matching computed by our algorithm has some new ideas which
may be useful elsewhere.

Organization. In Section 2 we define the problem more carefully
and state some preliminary lemmas and results that we will subse-
quently use. To simplify the presentation we first present in Sec-
tion 3 an algorithm that runs in O(n1+ε) expected time and returns
a matching whose expected cost is within O(1/ε) of the optimal. In
Section 4 we describe our improved algorithm that returns a match-
ing whose expected cost is within O(log 1

ε
) of the optimal. We will

restrict our exposition to the two-dimensional version. Our algo-
rithms and their analysis readily generalize to any fixed dimension.

2. Preliminaries
Let R be a set of n “red” points and B a set of n “blue” points
in

� 2 . A perfect bipartite matching of P = R ∪ B is a subset
M ⊆ R × B of red-blue pairs such that each point in P is present
in exactly one pair of M ; we refer to a perfect bipartite matching
as simply a matching. Obviously, |M | = n. We define the cost of
a matching M of P to be

µ(P, M) =

�
(u,v)∈M

d(u, v),

where d(u, v) is the Euclidean distance between u and v. If the set
P is fixed or obvious from the context, we will use µ(M) to denote
µ(P, M). Let

µ(P ) = min
M

µ(P, M)

denote the cost of the min-cost matching of P , and let � ∗(P ) be a
min-cost matching of P .

We begin with the following simple observations.

LEMMA 2.1. Let P = R ∪ B, let P ′ be the point set ob-
tained by “moving” each point p ∈ P to a point p′, and let ∆ =�

p∈P d(p, p′).

(i) Let M be any perfect matching of P , and let

M ′ = {(p′, q′) | (p, q) ∈ M}

be the corresponding perfect matching of P ′. Then

|µ(M ′) − µ(M)| ≤ ∆.

(ii) Let M be the matching in P corresponding to the optimal
perfect matching of P ′. Then

µ(M) ≤ µ(P ) + 2∆.

The following lemma suggests how to compute a rough approx-
imation of µ(P ).

LEMMA 2.2. Let R be a set of n red points and B a set of n
blue points in

� 2 ; set P = R ∪ B. We can compute in O(n log n)
time a number α such that

α ≤ µ(P ) ≤ 2n2α. (1)
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Figure 1. A recursive step of the matching algorithm: (i) An input set and its min-cost matching. (ii) The transportation problem corresponding to Q; the
numbers near the points are their demands, and the numbers near the arcs are the edge weights in the solution of the transportation problem. (iii) A recursive
solution for each cell in the grid. (iv) The output matching.

G Gi∗

ei∗

Figure 2. Computing a rough approximation of µ(P ).

PROOF. We compute in O(n log n) time the minimum spanning
tree T of P (ignoring the colors), under the L∞-metric, using the
algorithm by Callahan and Kosaraju [5]. Let e1, . . . , e2n−1 be the
edges of T in increasing order of their lengths. For 0 ≤ i ≤ 2n−1,
let Gi denote the subgraph induced by the edges e1, . . . , ei, and
let i∗ be the smallest integer for which each component of Gi∗ has
equal number of red and blue points. Given the ordering of the
edges, i∗ can be computed in O(n) time. The length of ei∗ is the
desired value of α. See Figure 2.

Indeed, the graph Gi∗−1 has at least one connected component
C in which the number of red and blue points is not the same. So
any perfect matching M of P has an edge e that has one endpoint in
C and another endpoint in a component of Gi∗−1 different from C.
By a well known property of MSTs, ‖e‖∞ ≥ ‖ei∗‖∞. Moreover,
‖e‖2 ≥ ‖e‖∞, we conclude that µ(P ) ≥ α.

Every connected component of Gi∗ has the same number of red
and blue points. We construct a perfect matching M ′ of P by find-
ing an arbitrary perfect matching for the points within each compo-
nent. Note that for each edge (u, v) ∈ M ′ there is a path between
u and v in Gi∗ . Since each edge of Gi∗ has length at most α, we
conclude from the triangle inequality that ‖uv‖∞ ≤ nα. Thus
d(u, v) ≤ 2nα and µ(M ′) ≤ 2n2α.

For a parameter δ > 0, let � δ be the square grid formed by
the horizontal lines y = iδ and the vertical lines x = jδ, where
i, j ∈ � . We define a random shift of � δ to be the grid formed
by the lines y = iδ + ax and x = jδ + ay, where ax, ay are two
independently chosen random numbers in the interval [0, δ).

3. The Algorithm
In this section, we describe an algorithm that, given the input set
P = R ∪ B of 2n points and a parameter ε > 0, runs in O(n1+ε)

expected time and returns a matching of P whose expected cost is
at most O(1/ε) times the optimal. We assume that the point set P
is enclosed in a bounding square E. The algorithm is a call to the
following procedure Match with parameters P and E. The algo-
rithm is described in a way that will make it easy to describe the
modifications needed to obtain the improved algorithm. Through-
out the algorithm, n will denote |R| = |B|.

Procedure Match(S, D).

1. If m = |S|/2 is smaller than some constant, then compute
an optimal matching of S using the Hungarian algorithm and
and return this matching.

2. Using the algorithm of Lemma 2.2, we first compute an ap-
proximation α to µ(S) such that α ≤ µ(S) ≤ 2m2α.

3. If 2m5α is greater than 1/8 times the side-length of D, we
compute a matching of S by making a call to the proce-
dure SubMatch with parameters S, D, α, m and return
this matching. Otherwise, we take a random shift of the
grid � 2m5 α. Let � denote the set of grid cells that inter-
sect D. For each grid cell C ∈ � , let SC = S ∩ C, let
χ(C) = ||SC ∩ R| − |SC ∩ B||. If SC contains more red
points than blue points (resp. blue points than red points)
we arbitrarily pick χ(C) red points (resp. blue points) and
denote the set by QC . Let Q = ∪C∈ � QC . Note that Q
contains an equal number of red and blue points. We com-
pute a perfect matching of the points in Q as follows. For
each cell C, we “move” each point in QC to the center of the
grid cell C. We compute an optimal perfect matching for the
moved points using the Hungarian algorithm; let M denote
the corresponding matching of Q.

4. For each cell C ∈ � for which SC − QC is nonempty, we
compute a perfect matching MC of the points SC − QC

using a call to the subroutine SubMatch with parameters
SC−QC , C, α, m. We return the matching M∪ 	 C∈ � MC .

The subroutine SubMatch is a recursive procedure that takes
as input a point set S consisting of an equal number of red and
blue points, a box D containing S, and parameters α and m. Note
that m here will be set to the size of the point set in the original
Match routine that invoked SubMatch; and α will be the crude
approximation computed by this Match routine. The subroutine
SubMatch will compute a perfect matching of S.

Procedure SubMatch(S, D, α, m)

1. Let L denote the side length of D. If L ≤ α/m2, we com-
pute an arbitrary perfect matching of S and return it.



2. Let δ = ε/12. If |S|/2 ≤ n6δ , we compute a perfect match-
ing of S using the Hungarian algorithm and and return it.

3. We take a random shift of the grid � L/ max{8,mδ}. Let �
denote the set of grid cells that intersect D. For each grid cell
C ∈ � , let SC = S∩C, let χ(C) = ||SC ∩R|− |SC ∩B||.
If SC contains more red points than blue points (resp. blue
points than red points) we arbitararily pick χ(C) red points
(resp. blue points) and denote the set by QC . Let Q =
∪C∈ � QC . Note that Q contains an equal number of red and
blue points. We compute a perfect matching of the points
in Q as follows. For each cell C, we “move” each point in
QC to the center of the grid cell C. We compute an optimal
perfect matching for the moved points using an algorithm for
the transportation problem; let M denote the corresponding
matching of Q.

4. For each cell C ∈ � for which SC − QC is nonempty, we
compute a perfect matching MC of the points SC − QC

using a call to the subroutine SubMatch with parameters
SC−QC , C, α, m. We return the matching M∪ 	 C∈ � MC .

Running time analysis
Step 2 of procedure Match takes O(m log m) time. The expected
running time of Step 3 is O(m), because |Q| =

�
C∈ � χ(C) is

bounded by the number of edges of the optimal perfect matching of
S that cross the grid lines, and the probability that the latter number
is greater than 0 is at most 1/m3 due to the large grid size. Thus the
running time is O(m3) (for running the Hungarian algorithm) with
probability at most 1/m3 and is O(m) otherwise. The expected
time is thus linear. The overall expected running time of Match is
thus O(m log m).

The running time of Step 2 of procedure SubMatch is O(|S|3),
where |S| ≤ n6δ . Thus the contribution of Step 2 to the overall
overall running time is

�
i O(n3

i ) given that
�

i ni ≤ n and each
ni ≤ n6δ . Thus the cost of Step 2 overall is O(n1+12δ). In step 3,
the size of Q may be quite large but the size of the moved point set,
not counting multiplicities, is only O(m2δ) = O(n2δ) (because the
number of grid cells in � is O(m2δ)). Thus solving this matching
problem by running the algorithm for the transportation problem
due to Atkinson and Vaidya [4] takes O(n5δ log2 n) time which is
O(n6δ). This is bounded by the size of the point set S. Thus the
running time of SubMatch is linear in |S| if we ignore Step 2.

The number of levels in the recursion is O(1/δ) because the size
of the bounding box when SubMatch is first invoked is at most
16m5α, the bounding box size falls by a factor of at least mδ with
each level of the recursion, and the smallest bounding box size is
α/m2. So the overall expected running time of the algorithm is
O(m log m + m/δ + n1+12δ). Note that the third term comes
from Step 2 of SubMatch. With our choice of δ = ε/12 the
overall expected running time is O(n1+ε).

Remark 3.1 The procedures Match and SubMatch are quite
similar. The purpose of Match is to handle the scenario when the
initial bounding box of the input point set is too large.

Quality of the matching produced
In analyzing the quality of the matching produced, it will be con-
venient to speak of the hierarchical subdivision or the generalized
quadtree that the procedures Match and SubMatch together pro-
duce. The root node of this subdivision is associated with the input

point set P and its bounding square. In general, a node of the subdi-
vision is associated with a point set S ⊆ P and a square D contain-
ing S. If this is a leaf of the subdivision (corresponding to Step 1 of
Match and Steps 1 and 2 of SubMatch), the algorithm directly
computes a matching of the point set S. If this is an internal node
of the subdivision, the algorithm uses a randomly shifted grid of
an appropriate size to break up D into a set of cells � , computes a
matching of a subset Q ⊆ S of points that are then discarded, and
recursively computes a matching for the points SC − QC within
each cell C ∈ � . Thus there is a node of the subdivision for each
cell C for which SC − QC is non-empty, and each such node be-
comes a child of the current node.

For any node v of the subdivision Ξ that is produced by the al-
gorithm, let Sv be the associated set of points and Dv the bounding
square. If v is an internal node of Ξ, let Qv ⊆ Sv denote the set of
“discarded” points, let Zv = Sv −Qv , let 
 v denote the matching
of Qv computed by our algorithm, let � v denote the set of cells into
which Dv is subdivided, and let λv denote the side-length of any
cell in � v. Let � 0 denote the set of leaves of Ξ and � 1 the set of
internal nodes.

Let � denote the optimal perfect matching of the input set of
points P . For the sake of analysis, we describe a scheme for con-
structing a perfect matching 
 v for the points Sv associated with
each leaf v ∈ � 0. Let M l = 	 v∈� 0


 v . Let Md = 	 v∈ � 1

 v .

Clearly, M l ∪ Md is a perfect matching of P . The construction is
best viewed as a scheme that converts � into M l ∪ Md.

The conversion scheme. We visit Ξ in a top down manner (in a
post-order fashion). At each node v we have a matching � v of Sv .
For the root u of � , � u = � . If v is an internal node, we process� v in two stages, each of which involves performing a sequence
of edge swaps. Let � E

v ⊆ � v denote the subset of edges that are
“cut” by the subdivision of Dv into � v, that is, those edges whose
endpoints lie in different cells of � v.
Stage I. Let M ′ = � v initially. We repeat the following step

till we are done: While there are two edges (r1, b1) and (r2, b2) in
M ′ such that both edges are cut by the subdivision of Dv into � v,
r1 and b2 are both in the same cell of � v and are of opposite color,
we replace these by (r1, b2) and (r2, b1); see Figure 3. At the end
of this stage, exactly χ(C) = |Qv ∩C| edges of M ′ from each cell
C ∈ � v are cut by the subdivision into � v.

r2b2

b1
r1

r2

b1

b2

r1

Figure 3. Swapping an edge in Stage I.

Stage II. For each cell C ∈ � v, we repeat the following
step till we are done: if there is in M ′ a cut edge (r2, b2) where
r2 ∈ Zv ∩ C and (by necessity) a non-cut edge (r1, b1) where
r1 ∈ Qv ∩ C has the same color as r2, we replace these edges by
the cut edge (r1, b2) and the non-cut edge (r2, b1); see Figure 4.

Let � v be the matching M ′ at node v after having performed
edge swaps in Stage I and II. Clearly, � v = 
 ′

v ∪ � v , where 
 ′
v is a

matching of Qv and � v is a matching of Zv . Furthermore, no edge
of � v is cut by the subdivision of Dv into � v. That is, for each
C ∈ � v, the restriction of � v to Zv ∩ C is a matching of Zv ∩ C
(and indeed constitutes the input matching � w of Sw = Zv ∩C for
the node w in Ξ corresponding to C).
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Figure 4. Swapping an edge in Stage II.

LEMMA 3.2. After having processed an internal node v ∈ Ξ,
we have the following:

(i) µ( � v ) + µ( 
 v ) ≤ µ( � v) + cλv| � E
v |, where c > 0 is a con-

stant.

(ii) | � v \ � v| ≤ 3| � E
v |.

PROOF. Each step in Stage I decreases the number of cut edges
in M ′ by at least one and increases the cost of the matching by at
most 2λv . Thus the number of steps is at most | � E

v | and the cost of
the matching has increased by at most 2λv| � E

v | in this stage. At the
end of the stage, exactly χ(C) edges of M ′ from each cell C ∈ � v

are cut by the subdivision into � v.
The number of times the step in Stage II is performed over all

cells in � v is at most |Qv| ≤ 2| � E
v |, and each step increases the

cost of the matching by at most 2λv . It is therefore clear that

µ( � v ) + µ( 
 ′
v ) ≤ µ( � v) + c′λv| � E

v |.
for some constant c′ > 0. Now

µ( 
 v ) ≤ µ( 
 ′
v ) + 2λv |Qv| ≤ µ( 
 ′

v ) + 8λv| � E
v |,

where the first inequality follows from Lemma 2.1 (ii). This com-
pletes the proof of (i). We introduced at most one new edge into
M ′ in each step of stage 1 and stage 2. Hence the overall number
of new edges is at most 3∗ | � E

v |, completing the proof of (ii).

It is clear that at the end of the traversal, we have the matching
M l ∪ Md as stated. Indeed, for any leaf v ∈ � 0, 
 v is going to
be � v. The significance of M l ∪ Md is that if our algorithm were
to compute an optimal matching for the points Sv associated with
each leaf v ∈ � 0, then the cost of the overall matching computed
by our algorithm would be at most µ(M l ∪ Md).

We therefore wish to bound µ(M l∪Md)−µ(� ). From Lemma
3.2 (i), we see that µ(M l∪Md)−µ(� ) is at most 	 v∈ � 1

cλv| � E
v |.

We account for this by charging cλv to each edge in � E
v for each

internal node v ∈ � 1.
To bound the total charge, we do the following for each internal

node v ∈ � 1: For each edge e ∈ � E
v , we pick up to three edges

from � v \ � v and call these the children of e. We ensure that each
edge in � v \ � v is a child of exactly one edge in � E

v . This is possible
because of Lemma 3.2 (ii).

Consider an edge f in the optimal perfect matching � , and sup-
pose it is cut (appears in � E

v ) at some internal node v ∈ � 1 and is
charged cλv . Let S1(f) denote its children and for 2 ≤ i define
Si(f) to be the union of the children of the edges in Si−1(f). Note
that |Si(f)| ≤ 3i. Furthermore, each edge in Si(f) is charged at
most cλv/8i, because the diameter of the bounding square falls by
at least 8 with each level of the subdivision. Thus the total charge
accumulated by the “descendants” of f is cλv

�
0≤i 3i/8i which

is at most c′λv for some constant c′ > 0. Thus the charge to the

descendents of an edge f in � is proportional to the charge to
the edge itself. What is the expected charge to the edge f? This
is at most the number of levels of the subdivision times the ex-
pected charge to it at an internal node v of the subdivision given
that f ∈ � v. The number of levels in the subdivision is O(1/ε).
Given that f ∈ � v, the expected charge to f at v is the proba-
bility f is in � E

v times cλv . It is easy to see that this probability
is at most 2||f ||/λv . We conclude that the expected charge to f
at v is O(||f ||), the expected total charge to f is O(||f ||/ε), and
the expected total charge applied to all the edges in � E

v for each
v ∈ � 1 is O(1/ε) ∗ µ( � ). We conclude that the expected value of
µ(M l) + µ(Md) is O(1/ε) ∗ µ(� ).
Increase in cost at the leaves. As we have already remarked, the
cost of the matching computed by our algorithm would be bounded
by µ(M l ∪ Md) if the algorithm computes an optimal matching
for the points associated with each leaf of the subdivision. The al-
gorithm in fact does this at any leaf that is handled by Step 1 of
Match or Step 2 of SubMatch. The only place where the al-
gorithm computes a sub-optimal matching of the points associated
with a leaf of the subdivision is in Step 1 of SubMatch. In such a
situation, each edge of the computed matching has length at most√

2α/n2 . Thus the cost of the matching computed by our algo-
rithm is at most

µ(Md ∪ M l) + n ∗
√

2α/n2 ≤ µ(Md ∪ M l) +
√

2µ(� )/n

≤ µ(M l ∪ Md) + µ( � ).

Since the expected value of µ(Md ∪M l) is O(1/ε) ∗µ( � ), we
have established the following result.

THEOREM 3.3. Let R be a given set of n red points and B a
given set of n blue points in

� 2 , and ε > 0 be a parameter. We can
compute in O(n1+ε) expected time a perfect matching of B ∪ R
whose expected cost is at most O(1/ε) times the optimal.

4. The Improved Algorithm
In this section we present our improved algorithm that, given a
point set P = R∪B of 2n points and a parameter 0 < ε < 1, runs
in O(n1+ε) expected time and returns a matching whose expected
cost is at most O(log 1

ε
) times the optimal. Note that if we ignore

step 2 of subroutine SubMatch, the algorithm of Section 3 runs
in O(n log n + n/δ) expected time, has 1/δ levels, and reduces
the problem to subproblems of size at most n6δ . The idea of the
modification is to set δ = 1/12 instead of δ = ε/12. Then the
algorithm runs in O(n log n) expected time, has a constant number
of levels, and reduces the problem to subproblems of size at most√

n. We then apply the same algorithm on the subproblems till we
get subproblems of size at most n1/4. We continue in this fashion
till we are left with subproblems of size at most nε/2, which we
then solve using the Hungarian algorithm. The number of levels
is now O(log 1/ε), and the analysis goes through giving an ap-
proximation of O(log 1/ε) times the optimal. The running time is
O(n log n log 1/ε + n1+ε).

The specific modification needed to our formal subroutines is
as follows: We replace Step 2 of subroutine SubMatch by the
following steps:

2a If |S|/2 ≤ nε/2 we compute an optimal matching of S using
the cubic algorithm and return this matching.

2b if |S|/2 ≤ m1/2, return the matching of S computed by
Match(S, D).



Running time analysis. As before, the expected running time of
the subroutines Match and SubMatch is O(|S| log |S|) if we ig-
nore Step 2a of SubMatch. Using an argument very similar to the
previous algorithm, the overall contribution of Step 2a to the run-
ning time is O(n1+ε). Furthermore, by construction, there is an
integer constant k ≥ 1 such that if the recursion depth is at least
k ∗ i for some integer i ≥ 0, the size of the associated point set
is at most 2n1/2i

. Since the size of the associated point set is at
least 2nε/2 when a recursive call is made, we conclude that the re-
cursion depth is O(log 1/ε). (Similar remarks apply to the depth
of the subdivision produced by the new algorithm.) Thus the over-
all expected running time is O(n log n log 1/ε + n1+ε), which is
O(n1+ε).
Quality of the matching produced. The analysis of the expected
value of µ(M l)+µ(Md) proceeds in a manner identical to the pre-
vious algorithm. Since the depth of the subdivision is O(log 1/ε)
now, the expected value of µ(M l)+µ(Md) is O(log 1/ε)µ(� ). A
little more care is needed to bound the increase in cost at the leaves
of the subdivision. Note that the algorithm computes a suboptimal
matching for the points associated with a leaf w of the subdivision
only using Step 1 of SubMatch. Let us say that an internal node
v of the subdivision is special if the algorithm computes a crude
approximation to the optimal matching of the points Sv associated
with v using Step 2 of Match. Note that because of Step 1 of
Match, |Sv| ≥ 2d for such a node v, where d is a large enough
integer constant. Let j be the smallest integer such that d2j ≥ n,
and for 1 ≤ i ≤ j, let � i be the set of all special nodes v such that
2d2i−1 ≤ |Sv | < 2d2i

. The algorithm ensures that if a point is
associated with two special nodes v and v′ and |Sv | < |Sv′ |, then
|Sv | ≤

�
|Sv′ |. It follows that no point is associated with more

than one node from � i. Let Mi be the matching obtained by tak-
ing the union of the optimal matching of Sv for each v ∈ � i. Since
the matching M l ∪ Md when restricted to Sv yields a matching of
Sv , we conclude that µ(Mi) ≤ µ(M l ∪ Md).

Consider some leaf w of the subdivision where the algorithm
computes a matching for Sw using Step 1 of SubMatch. Corre-
sponding to w, there is a special node v such that Sw ⊆ Sv , the
length of each edge of the matching of Sw computed by our algo-
rithm is at most

√
2α/(|Sv |/2)2 , where α ≤ µ(Sv). We “charge”

the cost of such an edge to v.
A special node v can be charged by only |Sv|/2 edges, so the

total charge to v is at most
√

2µ(Sv)/(|Sv|/2). It follows that
for any 1 ≤ i ≤ j, the total charge to all the nodes in � i is at
most

√
2µ(Mi)/d2i−1 ≤

√
2µ(M l ∪ Md)/d2i−1

. Thus the total
charge to all the special nodes is

√
2µ(M l∪Md)

� j
i=1 1/d2i−1

=

O(µ(M l ∪Md)). Since the cost of the matching M output by our
algorithm is at most µ(M l ∪ Md) plus the total charge to all the
special nodes, we conclude that µ(M) = O(µ(M l ∪ Md)). Thus
the expected value of µ(M) is O(log 1/ε)µ(� ). Thus we have:

THEOREM 4.1. Let R be a given set of n red points and B a
given set of n blue points in

� 2 , and ε > 0 be a parameter. We can
compute in O(n1+ε) expected time a perfect matching of B ∪ R
whose expected cost is at most O(log 1/ε) times the optimal.

5. Conclusions
To obtain a constant-factor approximation algorithm that runs in
say O(n log n) time, we may have to allow a richer interaction than
we currently do between the children of each internal node of the
subdivision. It is a very interesting open question to figure out how
a sufficiently rich interaction can be accomplished in the allowed
time.
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