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Abstract

Given a set V of 2n points in the plane, the min-cost perfect matching problem is to pair
up the points (into n pairs) so that the sum of the Euclidean distances between the paired
points is minimized. We present an O(n3/2 log5 n)-time algorithm for computing a min-cost
perfect matching in the plane, which is an improvement over the previous best algorithm of
Vaidya [21] by nearly a factor of n. Vaidya’s algorithm is an implementation of the algorithm
of Edmonds [9], which runs in n phases, and computes a matching with i edges at the end of
the i-th phase. Vaidya shows that geometry can be exploited to implement a single phase in
roughly O(n3/2) time, thus obtaining an O(n5/2 log4 n)-time algorithm. We improve upon this
in two major ways. First, we develop a variant of Edmonds’ algorithm that uses geometric
divide-and-conquer, so that in the conquer step we need only O(

√
n) phases. Second, we show

that a single phase can be implemented in O(n log5 n) time.
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1 Introduction

Given a set V of 2n points in the plane, we can associate a complete undirected graph G(V ) (or
simply G) with V as follows. The vertex set of G is the set of points V , and its edge set E consists of
all unordered pairs (u, v) such that u, v ∈ V and u 6= v. The cost of an edge (u, v) is the Euclidean
distance d(u, v) between u and v. A matching of G (or of V ) is a collection M of edges such that
no vertex in V is incident on more than one edge in M . A perfect matching of V is a matching M
in which every vertex in V is incident on exactly one edge M . Note that a perfect matching of V
has cardinality n. We define the cost of a matching M to be

∑
(u,v)∈M d(u, v), the sum of the costs

of the edges in M . The Euclidean min-cost perfect matching problem (MCPM) is to find a perfect
matching of V whose cost is the smallest.

The MCPM problem has applications in operations research, pattern recognition, statistics,
and VLSI (see [16]). The problem is used in determining the efficient movement of mechanical
plotters, which is a special case of the Chinese postman problem [10]; see the survey by Avis [6].
The fact that MCPM and related problems can be solved in polynomial time for general graphs is a
classical and fundamental result due to Edmonds [9]. Lawler [14] gave an O(|V |3) implementation
of Edmonds’ algorithm; using this, the MCPM problem in the plane can be solved in O(n3) time.
The question that motivates us is whether we can exploit geometry to do much better. (Note that
the complete graph induced by the set of 2n points is entirely specified by the co-ordinates of the
points.)

Since the min-cost, max-cardinality problem can be solved for sparse graphs in O(|E||V | log |V |)
time (Galil et al. [12]), there have been attempts at showing that the min-cost perfect matching
in the plane is a substructure of geometric structures such as the Delaunay triangulation. Coun-
terexamples to several such conjectures were given by Akl [3]. (Note that the Euclidean minimum
spanning tree is contained in the Delaunay triangulation [19] and Yao’s graph [22].) Vaidya [21] was
the first to show that geometry can be exploited to get a sub-cubic algorithm; his O(n5/2 log4 n)-
time algorithm is the best known for Euclidean MCPM.

For the bipartite version of this problem, Agarwal et al. [1] have given a near-quadratic algorithm
that improves over an earlier sub-cubic algorithm of Vaidya [21]. Attention has been paid to special
cases of the Euclidean MCPM, for instance the case when all the points are in convex position; see
Marcotte and Suri [16], and Buss and Yianilos [7] where near-linear time algorithms have been given
for such problems. There has also been considerable amount of work on approximation algorithms
for Euclidean matching; see Junger and Pulleyblank [13], the survey by Avis [6], and the references
therein. A lot of this work looks at the case where the points are in a unit sqaure, and aims at
producing a matching whose absolute cost is small. In contrast, Vaidya [20] gave an algorithm that
runs in roughly O(n3/2/ε3) time and returns a perfect matching whose cost is at most (1+ ε) times
the optimal, for any ε > 0. The recent algorithm of Arora [4] solves the same problem in time that
is near-linear in n, but is exponential in 1/ε.

The huge literature on matchings in general graphs is outside the scope of this paper. We refer
the reader to standard books on combinatorial optimization ([14],[18]) and matching theory ([15]).
Our results. We present an O(n3/2 log5 n)-time algorithm for computing a min-cost perfect match-
ing in the plane, which is an improvement over the previous best algorithm of Vaidya [21] by nearly
a factor of n. Vaidya’s algorithm is an implementation of the algorithm of Edmonds [9], which runs
in n phases, and computes a matching with i edges at the end of the i-th phase. Vaidya shows that
geometry can be exploited to implement a single phase in Õ(n3/2) time (we use the Õ() notation
when ignoring log-factors), thus obtaining an O(n5/2 log4 n)-time algorithm. We improve upon this
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in two major ways. First, we develop a variant of Edmonds’ algorithm that uses geometric divide-
and-conquer, so that in the conquer step we need only O(

√
n) phases. (Divide-and-conquer has

been used before for special cases of MCPM in the plane, for instance by Marcotte and Suri [16],
but these approaches rely heavily on the properties of the special cases.) The geometric tool that
we use for divide-and-conquer is based on the technique of Miller et al. [17] for finding geometric
separators for overlap graphs. Second, we show a single phase for an n-point set can be implemented
in O(n log5 n) time. To do this, we interpret the dual variables geometrically and establish certain
nice properties that they exhibit. We then exploit these properties to show that to implement a
single phase, it suffices to look at a subset of Õ(n) candidate edges, and not all the n(n − 1)/2
edges. The candidate edges are not known at the beginning of the phase itself, but are generated
as the phase unfolds, using a total of Õ(n) time. Combining this with the data structures of Galil
et al. [12] for implementing a phase of the matching algorithm for sparse graphs in Õ(|E|) time, we
obtain an O(n log5 n)-time implementation of a phase. For generating the candidate edges, we in-
troduce a notion called the semi-separated decomposition, which is a relaxation of the well-separated
decomposition of Callahan and Kosaraju [8].

In Section 2, we present our divide-and-conquer algorithm for MCPM, and show that only
√

n
phases are needed in the conquer step for a set of n points. In Section 3, we describe our approach
for implementing a single phase of the algorithm. For lack of space, we have not provided all the
proofs and details; we present some of them in an appendix, and have omitted some of them.

2 A divide and conquer framework for matching

In this section, we present a divide-and-conquer approach for min-cost perfect matching of the
set of points V in the plane. We assume in the following that we are dealing with the graph
G(V ) = (V,E) associated with the given set of points V . We say that a subset Q ⊆ V of V is
an odd subset or an odd-set if |Q| is odd and |Q| ≥ 3. For Q ⊆ V , let ξ(Q) denote the subset of
edges E with exactly one endpoint in Q, that is, ξ(Q) = {(u, v) ∈ E : |{u, v} ∩Q| = 1}. Let S(p, r)
denote the disk of radius r centered at point p.

Edmonds’ algorithm is motivated by duality theory for linear programs; see [9] and [14] for a
discussion of linear programming duality. His algorithm associates a ‘dual variable’ variable ωv for
each v ∈ V and a dual variable ωQ for each odd set Q. Sometimes, it will be convenient to denote
ωv by ω{v}. Corresponding to edge (u, v), let πuv = ωu + ωv +

∑
(u,v)∈ξ(Q) ωQ. From duality theory,

it follows that a perfect matching M is optimal if there exist values ωv, for each v ∈ V , and ωQ,
for each odd subset Q, such that the following conditions hold:
edge-feasibility: πuv ≤ d(u, v) for each (u, v) ∈ E.

positive-dual: ωQ ≥ 0 for each odd subset Q.

matching-admissibility: (u, v) ∈ M ⇒ πuv = d(u, v).

maximality: For each odd subset Q, if ωQ > 0, then the matching M is maximal within Q, that
is, the number of edges in M both of whose endpoints are in Q is (|Q| − 1)/2. Since M is
a perfect matching, this is equivalent to M ∩ ξ(Q) = 1.

Actually, we can prove this using a direct arguement. We simply note that the edge-feasibility

and positive-dual conditions imply that the cost of any perfect matching is at least
∑

v∈V ωv +∑
Q ωQ, while the conditions matching-admissibility and maximality imply that the cost of

M is exactly
∑

v∈V ωv +
∑

Q ωQ.
Like Edmonds’ algorithm, our approach also computes a perfect matching and a corresponding
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set of dual variables such that edge-feasibility, positive-dual, matching-admissibility, and
maximality are satisfied. The difference is that unlike in Edmonds’ algorithm, we use geometric
divide-and-conquer for doing this. Before describing our approach, we describe the important
notion of blossoms that was introduced by Edmonds. Our description of blossoms and other
standard components of the matching algorithm are based on the presentation of Galil et al.[12].

Definition 2.1 For any vertex v ∈ V , let λ(v) = ωv +
∑

v∈Q ωQ. An edge (u, v) is feasible if
πuv ≤ d(u, v). It is admissible if πuv = d(u, v).

2.1 Blossoms

During the course of our algorithm, certain odd subsets of V are designated as blossoms. The
algorithm maintains the property that ωQ > 0 for an odd subset Q only if Q is a blossom. The
set of blossoms at any stage have the following nested structure: For any two distinct blossoms B
and B′, either B ∩ B′ = ∅, or B ⊂ B′, or B′ ⊂ B. Each v ∈ V is a trivial blossom of size one. A
non-trivial blossom B is given by a sequence of blossoms B0, . . . , Br, where r = 2k, for k ≥ 1, and
a sequence of admissible edges ei = (ui−1, vi), for i = 1, . . . , r + 1, such that

1. ui, vi ∈ Bi mod (r+1)

2. For 1 ≤ i ≤ r + 1, (ui−1, vi) ∈ M if i is even and (ui−1, vi) 6∈ M if i is odd.

The blossoms B0, . . . , Br are referred to as the subblossoms of B. A blossom that is not a
subblossom of any other blossom is called an outermost blossom. Clearly, the outermost blossoms
induce a partition of V . It can be shown from the properties above that any blossom B contains
an odd number of vertices, and that the matching M is maximal within B. The unique vertex of
B that is not matched to any other vertex of B is called its base. The base can also be defined by
induction on the structure of blossoms as follows. The base of a trivial blossom v is the vertex v
itself. The base of a blossom B whose subblossoms are given by the sequence B0, . . . , Br (as above)
is the base of B0.

An alternating path between vertices v0 and vr is a sequence of admissible edges ei = (vi−1, vi),
for i = 1, . . . , r, such that for i = 1, . . . , r − 1, ei ∈ M if and only if ei+1 6∈ M . In other words,
it is a path in which alternate edges are in the matching. An alternating path between outermost
blossoms B0 and Br is given by a sequence of admissible edges ei = (ui−1, vi), for i = 1, . . . , r, and
a sequence of outermost blossoms B0, . . . , Br, where ui, vi ∈ Bi, and for i = 1, . . . , r − 1, ei ∈ M if
and only if ei+1 6∈ M . We say that a vertex v is exposed if no edge of the matching M is incident
on v; an outermost blossom B is exposed if no edge of the matching M is incident on the base of
B. An alternating path between two exposed vertices is called an augmenting path.

Lemma 2.2 Let u and v be points in different outer blossoms. The edge (u, v) is feasible (that is,
πuv ≤ d(u, v)) iff λ(u) + λ(v) ≤ d(u, v). The edge (u, v) is admissible (that is, πuv = d(u, v)) iff
λ(u) + λ(v) = d(u, v).

Proof: Follows from the fact that if u and v are in different outer blossoms, πuv = λ(u) + λ(v). 2

We show later that throughout our algorithm, λ(v) ≥ 0 for any v ∈ V . We define disk(v), the
disk of vertex v, to be the disk of radius λ(v) centered at v. Since λ(v) ≥ 0, disk(v) is well defined.
Lemma 2.2 tells us that if u and v are vertices in different blossoms, feasibility of (u, v) means
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that disk(u) and disk(v) do not overlap (although they can touch); admissibility of (u, v) means
disk(u) and disk(v) do not overlap but touch. This geometric interpretation is due to Junger and
Pulleyblank [13].

2.2 The divide-and-conquer algorithm

Let U ⊆ V be a subset of the given set of points, and let |U | = m. We will describe our divide-
and-conquer scheme for the set U . In our algorithm, we are also specified a bound limit(u) for each
u ∈ U . (In the beginning, we set limit(v) = ∞ for each v ∈ V and call the divide-and-conquer
procedure with U set to V .) The goal in the sub-problem for U is to compute a (not necessarily
perfect) matching M of U , a set of blossoms in U , and a set of dual variables ωu for each u ∈ U ,
and ωQ for each blossom Q (the dual variables of odd sets that are not blossoms are assumed to be
0), so that (1) the conditions edge-feasibility, positive-dual, matching-admissibility, and
maximality hold for U , and (2) in addition, the following two conditions are also satisfied:
radius-constraint: For each u ∈ U , λ(u) ≤ limit(u).

exposed-constraint: For each exposed blossom Q of U , there is a q ∈ Q such that λ(q) =
limit(q).

Let us call a blossom Q of U constrained if Q is exposed and there is a q ∈ Q such that
λ(q) = limit(q); we say that Q is unconstrained otherwise. Thus the last condition says that every
exposed blossom is constrained.
The divide step. Let C be a circle in the plane, and U1 (resp. U2) be the subset of U that lies
inside (resp. outside) the circle C. For each u ∈ U , let β(u) denote the distance from u to the
circle C. We call C a separating circle for U if the following conditions hold:

1. min{|U1|, |U2|} ≥ |U |/4.

2. Let W ⊆ U be any subset of points such that the family of disks {S(w, β(w))|w ∈ W} has
the property that any two disks in it have disjoint interiors. Then, |W | = O(

√
m).

We argue briefly in the appendix that a separating circle for U exists and can be computed in O(m)
time.

If the set U contains more c points, for some constant c, we find a separating circle C for U
that partitions U into two non-empty sets U1 and U2 as above. We recurse on the set U1 with the
bound for each u ∈ U1 set to newlimit(u) = min{limit(u), β(u)}. We recurse on the set U2 with
the bound for each u ∈ U2 set to newlimit(u) = min{limit(u), β(u)}.

Suppose that the recursive calls return a matching, blossoms, and dual variables for U1 (resp.
U2) satisfying the six conditions for U1 (resp. U2). To begin the conquer step for U , we obtain
an initial matching, dual variables, and blossoms by combining the matching, dual variables, and
blossoms for U1 and U2. At this stage, it is easy to see that all the six conditions except the
exposed-constraint are satisfied for U . We sketch the proof for the most interesting case, which
is edge-feasibility for edge (u, u′) where u ∈ U1 and u′ ∈ U2. We have

λ(u) ≤ newlimit(u) = min{limit(u), β(u)} ≤ β(u).

Similarly λ(u′) ≤ β(u′). Combining the inequalities, we have λ(u) + λ(u′) ≤ β(u) + β(u′). Since
u and u′ lie on opposite sides of the circle C, we can conclude that β(u) + β(u′) ≤ d(u, u′). Thus,
λ(u) + λ(u′) ≤ d(u, u′); geometrically, what we have shown is that disk(u) and disk(u′) do not
overlap. Since u and u′ are obviously in different outer blossoms, it follows from Lemma 2.2 that
(u, u′) is feasible.
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Observe that the exposed-constraint condition may be violated for a blossom Q of U . The
‘conquer’ stage of the divide-and-conquer algorithm for U eliminates the violations of the exposed-

constraint, thus ‘solving’ the sub-problem for U . The ‘conquer’ stage consists of a series of phases;
in each phase the number of exposed, unconstrained blossoms, is reduced by either one or two.
Base case. The base case for the divide-and-conquer is when |U | ≤ c. To solve the base case,
we initialize the matching on U to be empty, and set all the dual variables to be zero. The only
blossoms of U are the trivial blossoms, and these are considered to be exposed and unconstrained.
We then execute the algorithm for the ‘conquer’ stage for U , which we now describe.

2.3 The conquer stage

As we indicated, the conquer stage consists of phases. Each phase begins with the current match-
ing M , a set of dual variables, and a set of blossoms. Some of the exposed blossoms are con-
strained, and are called c-blossoms. The algorithm always maintains the five conditions edge-

feasibility, positive-dual, matching-admissibility, maximality, and radius-constraint.
In each phase, the number of exposed, unconstrained, blossoms is decreased by one or two. Thus,
each phase decreases the number of violations of the sixth condition exposed-constraint, and
so the algorithm terminates after a finite number of phases.

During a phase, some unconstrained outer blossoms are labelled as s-blossoms and t-blossoms.
(An outer blossom is labelled as either an s-blossom or a t-blossom, but not both.) An unconstrained
outer blossom which is not labelled is called a free blossom or f -blossom. (s-, t-, and f - prefixes are
only for unconstrained blossoms.) A vertex is called an s-vertex, t-vertex, or f -vertex according
to whether it belongs, respectively, to an s-blossom, t-blossom, or f -blossom. We let S, T , and F
denote, respectively, the set of s-vertices, t-vertices, and f -vertices. For any v ∈ V , let b(v) denote
the outermost blossom containing V .

A phase is divided into O(m) sub-phases. At the end of each sub-phase, the following invariants
hold. An exposed, unconstrained blossom is always an s-blossom. For every s- or t- blossom B,
there is an alternating path σ(B′, B) between an exposed, unconstrained blossom B′ and B. If
B is an s-blossom, σ(B′, B) has even length, that is, there are an even number of edges in the
alternating path. If B is a t-blossom, σ(B′, B) has odd length. The s- and t-blossoms, together
with the corresponding alternating paths, induce a forest of rooted trees, a tree being rooted at each
exposed, unconstrained blossom. The trees are called alternating trees, and the forest is called an
alternating forest. (The c-blossoms are not in the alternating forest.) The leaves of the alternating
trees are always s-blossoms.

For every f -blossom B, there is another f -blossom C such that there is an edge in matching
M between the bases of B and C. That is, M induces a perfect matching on the bases of all the
f -blossoms.

At the start of the phase, we label each exposed, unconstrained blossom as an s-blossom; every
other unconstrained outer blossom is an f -blossom. A sub-phase consists of the following loop,
which is repeated until a termination condition for the phase is met. The above invariants hold at
the end of each iteration of the loop. Let

δ1 = minQ a nontrivial t-blossom ωQ δ2 = minu∈S,v∈F (d(u, v) − πuv)

δ3 = minu,v∈S; b(u)6=b(v)(d(u, v) − πuv)/2 δ4 = minu∈S,v a c-vertex(d(u, v) − πuv)

δ5 = minu∈S(limit(u) − λ(u))
and let δ = min{δ1, δ2, δ3, δ4, δ5}.
Dual change: Let ωQ be the dual variable corresponding to the blossom Q. (If Q is a trivial

blossom consisting of a vertex v, then ωQ = ωv.) For each s-blossom Q, we increase ωQ by δ,
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and for each t-blossom Q, we decrease ωQ by δ. After the dual change, one of δ1, δ2, δ3, δ4, or δ5

becomes zero. (In case of a tie, we pick an arbitarary δi that is zero.) We will be terse about some
of the following cases, which are standard; see [12]

δ1 = 0: In this case, the dual variable ωB corresponding to a (non-trivial) t-blossom B becomes
zero. We expand B, that is, we stop regarding it as a blossom and make its subblossoms outer
blossoms. Some of these new outer blossoms become s-blossoms, some become t-blossoms, and
some f -blossoms.

δ2 = 0: In this case, an edge (u, v), which is now admissible, between an s-vertex u and an
f -vertex v has been discovered. Two f -blossoms are added to the alternating forest, one as a
t-blossom and the other as an s-blossom.

δ3 = 0: An edge (u, v) which is now admissible has been discovered between s-vertices u and
v. Either a new s-blossom is formed, or an alternating path between two exposed, unconstraned
blossoms is discovered. The latter subcase ends the phase and is handled in a manner similar to
the case where δ4 = 0.

δ4 = 0: An edge (u, v), which is now admissible, has been discovered between an s-vertex u and
a c-vertex v. Let A (resp. B) be the s-blossom (resp. c-blossom) containing u (resp. v). Let A′

be the exposed, unconstrained, blossom which is the root of the alternating tree containing A, and
let σ(A′, A) denote the corresponding even-length alternating path between A′ and A. Note that
σ(A′, A), the edge (u, v), and the blossom B together constitute an alternating path between the
exposed blossoma A′ and B. We expand this to an alternating path π between the exposed bases
of A′ and B. We augment the current matching M by excluding all edges of M belonging to π and
including the other edges of π. Note that the cardinality of the matching M increases by one, and
the number of exposed, unconstrained, blossoms falls by one since A′ is now no longer exposed. We
also change appropriately the bases of all the blossoms through which the augmenting path passes.
This ends the current phase of the algorithm.

δ5 = 0: In this case, λ(u) has increased to limit(u) for an s-vertex u. Let A be the s-blossom
containing u. Let A′ be the exposed, unconstrained, blossom which is the root of the alternating
tree containing A, and let σ(A′, A) denote the corresponding even-length alternating path between
A′ and A. We expand σ(A′, A) to an even-length alternating path π between the bases of A′ and
A. We alter the current matching M by excluding all edges of M belonging to π and including
the other edges of π. We change appropriately the bases of all the blossoms through which the
augmenting path passes. This ends the current phase of the algorithm. We can show that the
cardinality of the matching M remains unchanged, and the number of exposed, unconstrained,
blossoms falls by one. Note that in the next phase, A is constrained.

This completes the description of a phase. At the end of the phase, we (recursively) expand all
outer blossoms whose dual variable is zero.

This also completes our description of the overall divide-and-conquer scheme for min-cost perfect
matching.

Lemma 2.3 The number of phases in the conquer step for U is O(
√

m).

Proof: Let E denote the number of exposed, unconstrained blossoms at the beginning of the
conquer step. Since each phase decreases the total number of exposed, unconstrained blossoms by
one or two, the number of phases is at most |E|. Hence it suffices to show |E| = O(

√
m). To do this,

we will use the properties of the separating circle C. We first argue that for each Q ∈ E , there is a
q ∈ Q such that λ(q) = β(q). Assume, w. l. o. g, that Q ⊆ U1. Since Q is exposed, the condition
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exposed-constraint for U1 implies that there is a q ∈ Q such that

λ(q) = newlimit(q) = min{limit(q), β(q)}.

Since Q is unconstrained at the beginning of the conquer step for U , λ(q) < limit(q). It follows
that λ(q) = β(q).

Consider the family of disks formed by picking for each Q ∈ E a disk S(q, β(q)) such that q ∈ Q
and β(q) = λ(q). From Lemma 2.2 and the fact that the edge-feasibility condition holds, we
see that this family of disks have pairwise disjoint interiors. The second property of the separating
circle C implies that there are only O(

√
m) disks in the family. We conclude that |E| = O(

√
m). 2

A phase of our ‘conquer’ step is quite similar to a phase in Edmonds’ algorithm, except that
we also need to deal with constrained blossoms and the radius-constraint condition. For a
fast implementation of one phase of the conquer algorithm (or of Edmonds’ algorithm), we need
a mechanism to quickly compute when δi becomes zero. As in a phase of Edmonds’ algorithm,
handling δ2 and δ3 seem to be the hard cases. We can easily maintain δ1 and δ5 in a total of
Õ(n) per phase, as this involves only the dual variables corresponding to O(n) blossoms. We can
maintain δ5 efficiently using a data-structure for answering closest point queries [5]. Maintaining
δ2 and δ3 using such an approach is more problematic because of the way the blossoms and the
labels change. However, Vaidya [21] showed that geometry can be exploited to maintain δi using
a total of Õ(m3/2) time per phase (in Edmonds’ algorithm), thus obtaining a running time of
Õ(n5/2) for MCPM. In Section 3, we show that we can detect when δi becomes zero using a total
of O(m log5 m) time per phase (we can show this for a phase in Edmonds’ algorithm as well). The
following theorem results from a careful implementation of a phase, similar to the implementation
of a phase of Edmonds’ algorithm described by Galil et al. [12] or Vaidya [21].

Theorem 2.4 Suppose that we can detect when δi becomes zero using a total of O(λ) time in a
single phase of the conquer step for U . Then, one phase can be implemented in O(m log m + λ)
time, where m = |U |.

Thus, a phase of the conquer step takes O(m log5 m) time. As there are O(
√

m) phases, the
conquer step takes O(m3/2 log5 m) time. Since a separating circle for U can be found in O(m) time,
we conclude that the time for solving the sub-problem for U , not counting the time for solving
the recursive sub-problems U1 and U2, is O(m3/2 log5 m). Since |U1|, |U2| ≥ |U |/4 (first property of
separating circle), a standard analysis tells us that the overall time needed to solve the sub-problem
for U is O(m3/2 log5 m). Putting everything together, we conclude:

Theorem 2.5 A min-cost perfect matching of a set V of 2n points in the plane can be computed
in O(n3/2 log5 n) time.

3 Implementing a phase

In this section, we describe an efficient algorithm for implementing a single phase of the conquer
step for U . We begin by making some useful observations about our algorithm. Some other
geometric observations needed for the correctness of our algorithm are presented in the appendix.
The following lemma uses the triangle inequality for distances in the Euclidean metric.

Lemma 3.1 For any vertex v ∈ V , ωv ≥ 0 at all stages in the algorithm. Consequently, λ(v) ≥ 0,
for all v ∈ V .
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Definition 3.2 The time at any point in a single phase of the algorithm is the sum
∑

δ of all
the dual changes made by the algorithm since the beginning of the phase. That is, the time at the
beginning of the phase is zero, and each dual change step increments the time by δ.

Within a single phase, the dual variables, and the quantities that depend on them, can be
regarded as functions of time. Hence, we will denote by µ[t] the value of a dual variable µ at
time t of the algorithm. We will do the same for quantities that depend on the dual variables.
The following observation depends on the fact that the algorithm increases the dual variables
corresponding to the s-blossoms, decreases the dual variables corresponding to the t-blossoms, and
does not change the dual variables corresponding to the f -blossoms. It also expresses a property
of the algorithm’s labelling scheme.

Fact 3.3 During a phase, a vertex v may change its status from an f -vertex to a t-vertex (and
vice versa) a number of times. In this part of the phase, λ(v) can only decrease. However, once v
becomes an s-vertex, it remains an s-vertex until the end of the phase. In this part of the phase,
λ(v) can only increase. If v belongs to a c-blossom, λ(v) does not change at all during the phase.

Recall that we defined disk(v) to be the disk of radius λ(v) centered at v. Since λ(v) ≥ 0
(Lemma 3.1), disk(v) is well defined. Lemma 2.2 tells us that if u and v are vertices in different
blossoms, disk(u) and disk(v) do not overlap (although they can touch). Thus, the question of
detecting when δ2, δ3, or δ4 becomes zero (as a consequence of dual changes) boils down to detecting
when disks of points in different blossoms touch.

3.1 Candidates

To detect when δ2, δ3, or δ4 becomes zero during a phase, we could ‘monitor’ all the edges (u, v)
and detect when disk(u) and disk(v) touch. In this section, we show that it is sufficient to monitor
a certain set of Õ(n) candidate edges. This is shown in Lemma 3.7, the main result of this section.
To prove this result, we use the properties established above. The candidate edges are not known at
the beginning of the phase itself, but are generated as the phase progresses. Before we can specify
how the candidate edges are generated, we need to introduce a certain cover of the set of edges.

A semi-separated decomposition Let C(p, r) denote the closure of R
2−S(p, r), where S(p, r)

is the disk of radius r centered at p. We say that two point sets A and B are semi-separated if
there exists a point p and a real number r ≥ 0 so that

1. A ⊆ S(p, r), and

2. B ⊆ C(p, sr). Here, s is the separation constant, assumed throughout to be fixed to a constant
greater than 1. (For this paper, we take s = 9.)

A set {(A1, B1), . . . , (Ak, Bk)} of pairs is said to be a semi-separated decomposition (SSD) of U
if

1. For any edge (u, v) of G(U), there is a pair (Ai, Bi) such that either u ∈ Ai and v ∈ Bi, or
v ∈ Ai and u ∈ Bi.

2. Ai and Bi are semi-separated, for all i = 1, . . . , k. Let pi denote the point and ri the radius
such that Ai ⊆ S(pi, ri), and B ⊆ C(pi, sri).
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For the pair (Ai, Bi) of the SSD, we will refer to pi as the center and ri the radius corresponding
to (Ai, Bi). The size of the semi-separated decomposition is

∑
i(|Ai| + |Bi|). Note that the SSD

is similar to the well-separated decomposition of Callahan and Kosaraju [8]. In fact, any well-
separated decomposition of U is an SSD of U . Our weaker notion of an SSD is motivated by
the fact that the size (according to our definition) of any well-separated decomposition of certain
m-point is Ω(m2). (See [8].) In contrast, we present in Section 7 a scheme to construct an SSD of
U whose size is O(m log4 m).

Let θ = 2π/h, where h is a sufficiently large integer constant. We refine the SSD as follows.
Assume that for the semi-separated pair (Ai, Bi), Ai ⊆ S(pi, r) and Bi ⊆ C(pi, sr), for some point
pi and r > 1. We subdivide the plane into h cones c1, . . . , ch such that each cj has pi has its apex
and an angular opening of θ. Let D(j) = Bi ∩ cj denote the set of points in Bi that are contained
in the cone cj . We replace each pair (Ai, Bi) in the original SSD by the set of pairs (Ai,D(j)), for
1 ≤ j ≤ h to obtain the refined semi-separated decomposition (RSSD) of U . See Figure 1 at the
beginning of the appendix for an illustration. We define the center and radius of (Ai,D(j)), for
1 ≤ j ≤ h, to be the center and radius of (Ai, Bi). We will refer to θ as the angular constant of
our RSSD. (In this paper, we choose θ = 1/18 radians.) In the description that follows, we assume
that we have computed an RSSD of U whose size is O(m log4 m). Using the algorithm described
in Section 7 in the appendix, we can compute the RSSD in O(m log5 m) time.
The event queue. We do not know what the candidate edges are at the beginning of the phase
itself. Rather, we generate the candidates as the phase progresses, when certain ‘events’ occur. We
maintain an event-queue to detect these events.

Definition 3.4 Let {(A1, B1), . . . , (Ak, Bk)} be an RSSD of the given set of points V . Consider a
pair (Ai, Bi) with center pi and radius ri. We pick an arbitarary point ai ∈ Ai as the representative
of Ai. Let bi ∈ Bi be the point in Bi that is closest to pi, and let ℓi = d(pi, bi) denote the Euclidean
distance between bi and pi. We let bi be the representative of Bi.

There can be two entries in the event queue corresponding to the pair (Ai, Bi). The representa-
tive ai is present if ai is an s-vertex and λ(ai) ≤ 2ri. We define the priority of ai to be 2ri − λ(ai).
The representative bi is present if bi is an s-vertex and λ(bi) ≤ θℓi + 3ri; here, θ is the angular
constant of the RSSD. We define the priority of bi to be θℓi +3ri −λ(bi). (The entry corresponding
to ai (resp. bi) is there to detect the event when λ(ai) increases to 2ri (resp. λ(bi) increases to
θℓi + 3ri).) Note that the priorities of all the entries in the event queue are non-negative. Also, the
priorities decrease uniformly with time, because the disks of s-vertices grow uniformly with time.
When the priority of an entry becomes zero, it is removed from the event queue.
Generation of candidates. We now describe how the candidates are generated during a phase.
At the beginning of the phase, we use the dual variables to compute λ(v), for each point v ∈ V .
We generate an initial set of candidate edges by examining each pair (Ai, Bi) of the RSSD as
follows. If λ(ai) ≥ 2ri, we execute the procedure Generate-candidates(Ai, Bi) described below. If
λ(bi) ≥ θℓi + 3ri, we execute the procedure Generate-candidates(Bi, Ai).

As mentioned before, the other candidates are generated as the phase unfolds, when certain
events are triggered. Such an event occurs when the priority of some element in the event-queue
becomes zero (as a consequence of a change in the dual variables). When this happens, the element
is removed from the event queue. Suppose the element corresponds to some pair (Ai, Bi) of the
RSSD of U . If the element is the representative of Ai (resp. Bi), we first compute λ(a), for each
a ∈ Ai (resp. λ(b), for each b ∈ Bi). We then generate a set of candidates by calling the procedure
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Generate-candidates(Ai, Bi) (resp. Generate-candidates(Bi, Ai)). To complete the description of
our scheme for candidate generation, we now describe the procedure Generate-candidates.

Definition 3.5 For any point p and any v ∈ V , the weighted distance of p from v, denoted
wd(v, p), equals d(v, p) − λ(v).

Generate-candidates(X,Y ): We assume that λ(x) is known for each x ∈ X. For each y ∈ Y , we
find the ‘closest point’ in X, that is, x ∈ X that minimizes wd(x, y) = d(x, y) − λ(x), and add
(x, y) to the list of candidate edges. For an efficient implementation, we compute, in O(|X| log |X|)
time, the weighted Voronoi-diagram of X, where the weight of an element x ∈ X is λ(x). (See
[5] for a survey of results on weighted Voronoi diagrams.) For any y, the ‘closest point’ in X can
be found using this data-structure in O(log |X|) time. Hence, Generate-candidates(X,Y ) can be
implemented in O((|X| + |Y |) log |X|) time.

Using Fact 3.3, we can show that the number of candidate edges generated per phase is pro-
portional to the size of the RSSD, which is O(m log4 m). The time spent in candidate generation
and in maintaining the event-queue is O(m log5 m).

Definition 3.6 Let C(t) denote the set of candidate edges generated before time t in the phase.
At any time t, we let δ∗2 be the minimum of (d(u, v) − πuv) over all candidate edges (u, v) ∈ C(t)
such that u ∈ S and v ∈ F . We let δ∗3 be the minimum of (d(u, v)−πuv)/2 over all candidate edges
(u, v) ∈ C(t) such that u and v are s-vertices not in the same blossom. We let δ∗4 be the minimum
of (d(u, v) − πuv) over all candidate edges (u, v) ∈ C(t) such that u is an s-vertex and v is in a
c-blossom.

Candidate edges are sufficient. Let us suppose that at some time t during the phase, there are
two vertices u and v in different maximal blossoms M and N , respectively, such that πuv = d(u, v),
that is, disk(u) and disk(v) touch. Then the following lemma, proved in Section 6 of the appendix,
says that the edge (u, v) is in C(t), the set of candidate edges generated before time t. (If more that
one pair of disks from blossoms M and N touch, the lemma guarantees that the edge corresponding
to at least one pair is in C(t).)

The main consequence of the lemma is that at any time t, δ2 = 0 ⇔ δ∗2 = 0, δ3 = 0 ⇔ δ∗3 = 0,
and δ4 = 0 ⇔ δ∗4 = 0. So it is sufficient for our algorithm to maintain δ∗2 , δ∗3 , and δ∗4 instead of δ2,
δ3 and δ4.

Lemma 3.7 Suppose that at some time t′ during the phase, there are two vertices u and v in
different maximal blossoms M and N , repectively, such that πuv = d(u, v). Then there is a candidate
edge (x, y) ∈ C(t′) such that x ∈ M , y ∈ N , and πxy[t

′] = d(x, y).

3.2 Data structures

In their algorithm for matching in general graphs, Galil et al. [12] give a method for maintaining
δ2 and δ3 using a total of O(|E| log |V |) time per phase, where |V | and |E| are, respectively, the
number of vertices and edges in the graph. Using their approach along with our procedure for
generating candidate edges, we can maintain δ∗2 , δ∗3 , and δ∗4 using a total of O(m log5 m) time per
phase. We omit here the other details of implementing a phase; many of these are quite similar
to their approach. We conclude that a phase of the conquer step for U can be implemented in
O(m log5 m) time.
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Figure 1: A pair (Ai, Bi) in the SSD; and its refinement to get the RSSD

4 Appendix: Computing the separating circle

We briefly describe our algorithm for computing a separating circle for a set U of m points in
the plane. Our algorithm is based on the approach of Miller et al. [17] for computing geometric
separators. They show that there is a continous, bijective map Π from the plane (plus a special
point at ‘infinity’) to the unit sphere S2 in R

3, that has the following properties:

1. Π maps disks (or the complement of disks) on the plane to spherical caps on the unit sphere
S2, where a spherical cap is defined to be the intersection of S2 with any halfspace in R

3.

2. Let U∗ = Π(U) be the points on S2 that Π maps U into. Any hemi-sphere of S2 contains at
least n/4 points of U∗.

Moreover, such a map Π can be computed in O(m) time. Given such a map, we find a great-
circle C∗ on S2 with the following separation property:

Let Y ∗ ⊆ U∗ be the set of points whose distance (along S2) from C∗ is smaller than
1/
√

m. Then |Y ∗| = O(
√

m)

Actually, we can show that a random great-circle of S2 has the separation property with probability
at least 1/2. We can also check in O(m) time if a given great-circle has the separation property.
This immediately gives us a randomized, O(m) expected-time, Las-Vegas algorithm for computing
a great-circle with the separation property. Using the techniques of Eppstein et al. [11], we can
in fact compute a great-circle with the separation property in O(m) time using a deterministic
algorithm.

The pre-image of C∗ under Π is a circle C in the plane. We return C as our circle separator
for U . Let U1 (resp. U2) be the subset of U lying inside (resp. outside) the circle C. The first
condition for a circle separator, that is, min{|U1|, |U2|} ≥ |U |/4, follows from property 2 of the map
Π. The second condition is shown by a packing arguement for spherical caps on S2 that uses the
properties of the map Π and the fact that C∗ has the separation property.
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5 Implementing a phase: properties of the algorithm

In these section, we state some additional properties of the matching algorithm that are exploited
in the efficient implementation of a phase. The following lemma is easily proved by (structural)
induction over the recursive structure of the algorithm.

Lemma 5.1 Let U ⊆ V be a set of points in a sub-problem of the overall recursive divide-
and-conquer procedure. Throughout the conquer step for U , the conditions edge-feasibility,
positive-dual, matching-admissibility, maximality, and radius-constraint are satisfied.

The following is a useful corollary of Lemma 2.2 and Lemma 3.1.

Corollary 5.2 For any u, v ∈ U , if d(u, v) < λ(u) in the conquer step for U , then u and v are in
the same outer blossom.

Corollary 5.3 For any u, v ∈ U , λ(u) ≤ λ(v) + d(u, v) in the conquer step for U .

Proof: From edge-feasibility, we have

λ(u) + λ(v) ≤ d(u, v) + 2
∑

u,v∈Q

ωQ.

Since all dual variables are non-negative,

∑

u,v∈Q

ωQ ≤
∑

v∈Q

ωQ ≤ λ(v).

Combining the two inequalities, we get the statement of the corollary. 2

We will now state some properties about a single phase in the conquer step for U .

Lemma 5.4 There are at most O(m) s-blossoms, f -blossoms, t-blossoms, c-blossoms, and sub-
phases in each phase of the algorithm.

Lemma 5.5 Let u and v be two vertices such that b(u) = b(v) at all times between t′′ and t′ in a
phase. Then for any t, t′′ ≤ t ≤ t′,

λ(u)[t] − λ(v)[t] = λ(u)[t′′] − λ(v)[t′′].

Proof: The lemma follows from the fact that if u and v are vertices in the same blossom, the dual
change step changes λ(u) and λ(v) by the same amount. 2

6 Implementing a phase: Proof of the main lemma

We present here the proof of Lemma 3.7.
Lemma 3.7 Suppose that at some time t′ during the phase, there are two vertices u and v in
different maximal blossoms M and N , repectively, such that πuv = d(u, v). Then there is a
candidate edge (x, y) ∈ C(t′) such that x ∈ M , y ∈ N , and πxy[t

′] = d(x, y).
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Proof: There is a pair (A,B) in the RSSD of the points V such that either u ∈ A and v ∈ B or
v ∈ A and u ∈ B. Assume, w. l. o. g, that u ∈ A and v ∈ B. Let p and r be the center and radius
corresponding to (A,B). Let a and b be the representatives of A and B, respectively. Note that
A is contained in a disk S(p, r) that is centered at p and has radius r. B is contained in a cone
K with apex at p and whose angular opening is θ, the angular constant of the RSSD. Note that
ℓ = d(p, b) ≥ sr, where s is the separation constant, and d(p, b′) ≥ ℓ for any b′ ∈ B.

Since πuv = d(u, v), and u and v lie in different maximal blossoms, it follows from Lemma 2.2
that

λ(u)[t′] + λ(v)[t′] = d(u, v) (1)

To prove the lemma, we consider two cases: either λ(u)[t′] ≥ 4r, or λ(u)[t′] < 4r.
Case 1 λ(u)[t′] ≥ 4r: Since d(u, a) ≤ 2r, we can conclude from Corollary 5.3 that λ(a)[t′] ≥ 2r.
Let t′′ ≤ t′ be the earliest time such that λ(a) ≥ 2r at all times between t′′ and t′. (Possibly,
t′′ = 0.) From Corollary 5.2, we can conclude that at any given time between t′′ and t′, all points
in A belong to the same maximal blossom.

At time t′′, our procedure for generating candidate edges finds an a′ ∈ A that minimizes wd(c, v),
over all c ∈ A, and introduces (a′, v) as a candidate edge. Thus, wd(a′, v)[t′′] ≤ wd(u, v)[t′′]. This
implies, by Lemma 5.5, that wd(a′, v)[t′] ≤ wd(u, v)[t′]. We conclude that d(a′, v) − πa′v[t

′] ≤
d(u, v) − πuv[t

′]. Since πuv[t
′] = d(u, v), edge-feasibility implies that πa′v[t

′] = d(a′, v). Hence
the lemma holds with x = a′ and y = v.
Case 2 λ(u)[t′] < 4r: In this case, the lemma follows from a series of claims, whose proofs we
provide later. From the triangle inequality,

d(u, v) + d(u, p) ≥ d(p, v).

Using equation 1 and the fact that u ∈ A,

λ(u)[t′] + λ(v)[t′] + r ≥ d(p, v).

Since λ(u)[t′] < 4r, we obtain
λ(v)[t′] ≥ d(p, v) − 5r.

Let pr(v) denote the ‘projection’ of v onto the disk S(p, ℓ), that is, the point of intersection of
the segment pv with the circle of radius ℓ centered at p. We can write

d(p, v) = d(p,pr(v)) + d(pr(v), v) = ℓ + d(pr(v), v).

Since B lies within the cone K with apex at p and angular opening θ, d(pr(v), b) ≤ θℓ.

Claim 6.1 At time t′, (1) b and v are in the same blossom, and (2) λ(b) ≥ θℓ + 3r.

Let t′′ be the earliest time such that λ(b) ≥ θℓ + 3r at all times between t′′ and t′. (Possibly,
t′′ = 0.) At time t′′, our procedure for generating candidate edges finds a b′ ∈ B that minimizes
wd(c, u) over all c ∈ B, and introduces (u, b′) as a candidate edge.

Claim 6.2 The points b′ and v belong to the same blossom at all times between t′′ and t′.
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We have wd(b′, u)[t′′] ≤ wd(v, u)[t′′]. By Lemma 5.5, this implies that wd(b′, u)[t′] ≤ wd(v′u)[t′].
We conclude that d(b′, u) − πb′u[t′] ≤ d(v, u) − πvu[t′]. Since πvu[t′] = d(v, u), edge-feasibility

implies that πb′u[t′] = d(b′, u). Hence the lemma holds with x = u and y = b′. 2

Proof of Claim 6.1. We have

λ(v) − d(v, b) ≥ (d(p, v) − 5r) − (d(v,pr(v)) + d(pr(v), b))

≥ (ℓ + d(v,pr(v)) − 5r) − (d(v,pr(v)) + θℓ)

= ℓ(1 − θ) − 5r

≥ θℓ + 3r,

since θ = 1/18 and ℓ ≥ 9r. Since θℓ + 3r > 0, part (1) of the claim follows from Corollary 5.2.
Part (2) of the claim follows from Corollary 5.3. 2

Proof of Claim 6.2. We prove the claim in two parts: (1) At any time between t′′ and t′, the
points b and v belong to the same blossom, and (2) at any time between t′′ and t′, the points b′

and b belong to the same blossom. Clearly, the claim is proved if we prove (1) and (2).
We first argue that

wd(v,pr(v))[t′] − wd(b,pr(v))[t′] ≤ 2r (2)

Assume the contrary, that is, d(pr(v), v) − λ(v)[t′] > d(pr(v), b)[t′] − λ(b) + 2r

wd(v, u)[t′] = d(u, v) − λ(v)[t′]

≥ d(p, v) − d(p, u) − λ(v)[t′]

= d(p,pr(v)) + d(pr(v), v) − d(p, u) − λ(v)[t′]

= d(p,pr(v)) − d(p, u) + d(pr(v), v) − λ(v)[t′]

> d(p,pr(v)) − d(p, u) + d(pr(v), b) − λ(b)[t′] + 2r

≥ d(p,pr(v)) − d(p, u) + d(pr(v), b) − λ(b)[t′] + 2d(p, u)

= d(p,pr(v)) + d(p, u) + d(pr(v), b) − λ(b)[t′]

≥ d(u, b) − λ(b)[t′]

= wd(b, u)[t′]

This is a contradiction, since the setting of the lemma and the fact that b and v belong to the
same blossom at t′ ( part (1) of Claim 6.1) imply that wd(v, u)[t′] ≤ wd(b, u)[t′].

We are now ready to prove part (1) of the claim. Assume that part (1) of the claim is false,
that is, there is a time t, where t′′ ≤ t ≤ t′, so that b and v belong to different blossoms at time
t. Also suppose that t is the largest such time. This means that at any time after t and upto t′, b
and v belong to the same blossom. From the inequality 2 and Lemma 5.5, we conclude that

wd(v,pr(v))[t] − wd(b,pr(v))[t] ≤ 2r (3)

Now, since d(pr(v), b) ≤ θℓ, and λ(b)[t] ≥ θℓ + 3r at all times, wd(b,pr(v))[t] ≤ −3r. Using
inequality 3, we conclude that wd(v,pr(v))[t] ≤ −r.

Since both wd(v,pr(v))[t] and wd(b,pr(v))[t] are negative, we have d(pr(v), v) < λ(v)[t], and
d(pr(v), b) < λ(b)[t]. By Lemma 2.2, v and b belong to the same blossom at time t. This contradicts
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the assumption that b and v were in different blossoms at time t. This completes the proof of part
(1).

To prove part (2), we first argue that wd(pr(b′), b′)[t′′] − wd(pr(b′), b)[t′′] ≤ 2r. Assuming the
contrary, we get wd(b′, u)[t′′] > wd(b, u)[t′′] as above. This contradicts the fact that (b′, u) was
chosen as the candidate edge at time t′′. To complete the proof of part (2), we proceed exactly as
in the proof of part (1). Only, we proceed in the ‘opposite’ direction, from t′′ to t′. 2

7 Computing the semi-separated decomposition

In this section, we describe our algorithm for computing a semi-separated decomposition (SSD) of
a given set of m points U . We first construct a range-tree on the set of points U , which can report
the subset of U contained in a query rectangle as a union of few subsets of U . The range-tree is
a 2-level partition tree, each of whose nodes is associated with a so-called canonical subset of U .
The total size of all the canonical subsets in the tree is O(m log2 m). For a query rectangle, the
query procedure selects O(log2 m) canonical subsets whose union consists of exactly those points
contained in the rectangle.

Let A1, . . . , Ak denote the canonical subsets in the range-tree of U . We now describe a procedure
that ‘assigns’ a subset Bi of U to each Ai. Our semi-separated decomposition of U is simply
{(Ai, Bi)|Bi 6= ∅}. The assignment is accomplished by a recursive procedure. At any level of the
recursion, we have a subset X of U and its minimum spanning tree MST(X). (We start off with
X = U .) If X contains only one point, there is nothing to do, and we return. Otherwise, let e be
the longest edge in MST(X), and ℓ be the length of e. We remove e from MST(X), thus splitting
it into two sub-trees whose vertex sets are, say, Y and Z. Note that the two sub-trees are the
minimum spanning trees MST(Y ) and MST(Z) of Y and Z respectively.

Assume, w. l. o. g, that |Y | is no bigger than |Z|. We repeat the following the procedure for
each y ∈ Y , and for each 0 ≤ i ≤ ⌊log n⌋. We cover the annulus

ann(y, i) = S(y, 2i+1ℓ) − S(y, 2il)

using O(1) squares of side 2i ∗ (ℓ/2s). (Notice that the side-length is chosen so that the points
within any square are semi-separated from y.) For each such square, we query the range-tree to
obtain O(log2 m) canonical subsets of U , and assign y to each of these canonical subsets. (Notice
that each of these subsets is semi-separated from y.) This completes the procedure at the current
level of recursion, and we recurse with Y and Z.

We first bound the size of the resulting SSD of U . It is clear that each point in Y is assigned
to O(log3 m) canonical subsets at one level of recusrion. From the fact that Y is smaller than Z, it
follows from a standard arguement that any point is assigned to O(log4 m) canonical subsets over
the entire procedure. Hence

∑
i |Bi| is O(m log4 m). Since

∑
i |Ai| is O(m log3 m), this means that

the size of the SSD of U is O(m log4 m).
To show that we indeed compute an SSD, we establish the following lemma:

Lemma 7.1 Let Ci ⊆ Y be the set of points assigned to Ai at the current level of recursion. For
any y ∈ Y and z ∈ Z, there is an Ai such that z ∈ Ai and y ∈ Ci.

Proof: For any y ∈ Y , let ann(y) = S(y, nl) − S(y, l). It is clear that for any u ∈ U that lies in
ann(y), the procedure assigns y to a canonical subset Ai that contains u. Moreover, Ai and {y}
are semi-separated.
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Hence, it suffices to show that z ∈ ann(y) for any z ∈ Z. From the properties of a minimum
spanning tree, it follows that the distance between any point in Y and any point in Z is at least ℓ,
the length of e. Hence, d(y, z) ≥ ℓ, and z 6∈ S(y, ℓ).

Now, MST(X) contains a path between y and z that uses at most (n − 1) edges. The longest
edge in this path is e, which has length ℓ, so the overall path length is at most (n − 1)ℓ. It follows
that d(y, z) ≤ (n − 1)ℓ, and so z ∈ S(y, nℓ). Thus, z ∈ ann(y). 2
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