This is a closed book exam. You have an hour and fifteen minutes.

1. Give an asymptotically tight bound on the worst case running time of the following algorithm as a function of \(n \), the number of elements in input array \(A \) and output array \(C \). (Express running time as \(\Theta(f(n)) \) for some appropriate \(f \).) (2 points)

 For \(i \) from 1 to \(n \) do
 \(C[i] := 0 \)
 endfor

 For \(i \) from 1 to \(n \) do
 For \(j \) from \(i \) to \(n \) do
 \(C[i] := C[i] + A[j] \)
 endfor
 endfor
 Return \(C \)

2. Give an asymptotic upper bound on the worst case running time of the following algorithm as a function of \(n \), the number of elements in input array \(A \) and output array \(C \). (Express running time as \(O(f(n)) \) for some appropriate \(f \).) Pick as good an \(f \) as you can. (3 points)

 For \(i \) from 1 to \(n \) do
 \(C[i] := 0 \)
 endfor

 For \(i \) from 1 to \(n \) do
 \(j := i \)
 While \(j \) is less than or equal to \(n \) do
 \(C[i] := C[i] + A[j] \)
 \(j := 2 \times j \)
 endwhile
 endfor
 Return \(C \)

3. In each of the following cases, say whether \(f(n) \) is \(O(g(n)) \) and whether \(f(n) \) is \(\Omega(g(n)) \). For example, if \(f(n) = n^2 \) and \(g(n) = n^3 \), then \(f(n) \) is \(O(g(n)) \) and \(f(n) \) is not \(\Omega(g(n)) \). (2 points)

 (a) \(f(n) = n \log n, g(n) = n^2 \).
(b) \(f(n) = 100n^2 + 300n, g(n) = n^2. \)
(c) \(f(n) = \frac{n^2}{3} - 200n + 120000, g(n) = n^2. \)
(d) \(f(n) = 1.17n \) and \(g(n) = 100n^2. \)

4. Consider the stable matching problem involving the three men \(m_1, m_2, m_3 \) and the three women \(w_1, w_2, w_3 \) with the following preferences:

- \(m_1 : w_1 > w_3 > w_2 \)
- \(m_2 : w_1 > w_2 > w_3 \)
- \(m_3 : w_3 > w_1 > w_2 \)
- \(w_1 : m_2 > m_3 > m_1 \)
- \(w_2 : m_1 > m_2 > m_3 \)
- \(w_3 : m_1 > m_3 > m_2 \)

Is the perfect matching that matches \(m_1 \) to \(w_1 \), \(m_2 \) to \(w_2 \), and \(m_3 \) to \(w_3 \) stable? If not, identify an instability, and describe a stable matching. (2 points)

5. Consider the two recursive algorithms we discussed for multiplying two \(n \)-polynomials when \(n \) is an integer power of 2. (3 points)

(a) When we call the \(\Theta(n^2) \) recursive algorithm for multiplying two \(n \)-polynomials, what is the total number of base case instances that are solved? Recall that in a base case instance we multiply two 1-polynomials. You can give the answer as an exact expression in terms of \(n \), or in the form \(\Theta(f(n)) \) for some appropriate \(f \).

(b) When we call the \(O(n \log_3^3) \) recursive algorithm for multiplying two \(n \)-polynomials, what is the total number of base case instances that are solved?

6. Consider the \(O(n \log^2 n) \) algorithm we discussed in class (or the \(O(n \log n) \) algorithm in the textbook) for finding the closest pair in a given set \(P \) of \(n \) points in the plane. We partitioned \(P \) into two sets \(P_1 \) and \(P_2 \) of roughly equal size so that points in \(P_1 \) have x-coordinates that are less than or equal to the x-coordinate of each point in \(P_2 \). We recursively computed the closest pair within \(P_1 \) and the closest pair within \(P_2 \) and then followed these up by considering pairs in \(P_1 \times P_2 \).

Suppose the algorithm design is changed so that \(P_1 \) and \(P_2 \) are obtained by partitioning according to y-coordinates rather than x-coordinates. That is, we sort \(P \) by y-coordinates, let \(P_1 \) be the first half of \(P \) in this sorted order and \(P_2 \) be the second half. Describe how the rest of the algorithm is to be modified – give the pseudocode. (3 points)