This is closed book exam. You have an hour and fifteen minutes.

1. Arrange the following running times in a sequence in such a way that any element in the sequence is big-O of the succeeding element.

 (a) \(n \log n \)
 (b) \(n^2 \)
 (c) \(n \log^3 n \)
 (d) \(1.7^n \)
 (e) \(n^{2.5} \)

2. Show the sequence of the set of engaged pairs in an execution of the stable matching algorithm involving the three men \(m_1, m_2, m_3 \) and the three women \(w_1, w_2, w_3 \) with the following preferences:
 - \(m_1 : w_1 > w_2 > w_3 \)
 - \(m_2 : w_1 > w_3 > w_2 \)
 - \(m_3 : w_3 > w_1 > w_2 \)
 - \(w_1 : m_2 > m_3 > m_1 \)
 - \(w_2 : m_1 > m_2 > m_3 \)
 - \(w_3 : m_1 > m_3 > m_2 \)

3. Suppose that we call the recursive \(O(n \log^3 n) \) algorithm for multiplying two polynomials whose coefficients are represented by the following arrays:

 - A: 1 7 2 4 6 3 5 2
 - B: 3 0 7 6 3 7 6 9

 What are the coefficient arrays that are passed to each of the three recursive calls made by the algorithm?

4. Consider the \(O(n \log^2 n) \) algorithm we discussed in class (or the \(O(n \log n) \) algorithm in the textbook) for finding the closest pair in a given set of \(n \) points in the plane. Write down a recurrence for upper bounding the number of pairs of points whose distance is computed by the algorithm. What does this recurrence solve to? Derive as tight a bound as possible in the big-O notation.

5. The following algorithm takes as input an array \(A \) of \(n \) integers and a target integer \(t \), and checks if there are two distinct elements in the array that add up to \(t \).
flag := false
For i from 1 to n-1 do
 For j from i+1 to n do
 if (A[i] + A[j] == t) then flag := true
 endfor
endfor
Return flag

(a) Give an asymptotically tight bound on the worst case running time of the algorithm as a function of n.

(b) Describe a new algorithm for the same problem with an asymptotically faster running time. (This is a design question, you should consider attempting it after attempting the other questions.)