We do not know too much about whether P = NP. Most people who have pondered the question believe that P ≠ NP.

However, we know of a very interesting phenomenon - a host of natural problems that are complete for NP.

A decision problem X is said to be NP-Complete if

(a) X ∈ NP

(b) For any Y ∈ NP,

\[Y \leq_p X. \]

If only (b) holds, X is said to be NP-hard.
What is striking about this definition is the requirement (b), which says that every problem in NP must be poly-time reducible to X. That brings up the question of whether there are any natural problems that are NP-Complete. Here on this shortly. First:

Fact Suppose X is an NP-complete problem. Then $X \in \text{P}$ if and only if $\text{P} = \text{NP}$.

Proof: Suppose $\text{P} = \text{NP}$. Then since $X \in \text{NP}$, $X \in \text{P}$.

For other direction, suppose $X \in \text{P}$. Let Y be any problem in NP. Since X is NP-complete, we know $Y \leq_p X$. Since $X \in \text{P}$
and \(Y \leq_p X \), \(Y \in \mathbf{NP} \). We conclude that \(\mathbf{NP} \subseteq \mathbf{P} \), and so \(\mathbf{P} = \mathbf{NP} \).

The fact implies that if \(\mathbf{P} \neq \mathbf{NP} \), that is, if any problem in \(\mathbf{NP} \) can't be solved in poly-time, then no \(\mathbf{NP} \)-Complete problem can be solved in poly-time.

We now introduce the circuit satisfiability problem, which will be our first \(\mathbf{NP} \)-Complete problem. Here, we are given a combinatorial circuit involving and/or/not gates, and we want to know if there is an assignment to input nodes that causes output to evaluate to 1.
First some examples, then the formal details.

\[\text{Input nodes} \]

\(\wedge \) - and
\(\lor \) - or
\(\neg \) - not

The above is a circuit. It is satisfiable - the assignment 1, 1, 0, 1 to input nodes is a satisfying assignment.
Here is a trivial circuit that is not satisfiable:

```
\[
\begin{array}{c}
\text{Input} \\
\rightarrow \\
\downarrow \\
\rightarrow \\
\text{Output}
\end{array}
\]
```

Formally, a circuit is a directed acyclic graph. The nodes with no incoming edges are called input nodes. Every other node is labelled either \land, \lor, or \neg. Nodes labelled \land or \lor have two incoming edges. Nodes labelled \neg have one incoming edge. There is exactly one node with no outgoing edge. This is called the output node.
Since a circuit is a DAG, it can be topologically sorted. We may assume that input nodes occur first in this order. Given an assignment of T/F (or 1/0) values to input nodes, the other nodes can be evaluated as follows. We go thru the non-input nodes in order - when we arrive at node \(v \), all nodes \(u \) such that \((u, v)\) is an edge have been evaluated. We evaluate \(v \) as follows. Suppose \(v \) is an and labelled \(\land \) and has incoming edges from \(u_1 \) and \(u_2 \). Then \(v \) evaluates to the "and" of whatever \(u_1 \) and \(u_2 \) evaluated to. The evaluation of \(v \) if it is labelled \(\lor \) or \(\forall \) is defined similarly.
Finally, the circuit evaluates to whatever the output node evaluates to.

The Circuit-satisfiability problem then is to determine, given a circuit C, whether there is an assignment to input nodes of C that causes the circuit to evaluate to true.

Theorem Circuit-Satisfiability is NP-Complete.

Proof Sketch:
It is easy to construct an efficient verifier for circuit-satisfiability. Thus the problem is in NP.
Let Y be any problem in NP. To show $Y \leq_p \text{Circuit-Satisfiability}$, we describe a poly-time algorithm that takes an input an instance x of Y and outputs a circuit $D(x)$ so that

x is a yes-instance of Y iff $D(x)$ is satisfiable.

Our description of this algorithm will be very sketchy.

Since $Y \in NP$, it has an efficient verifier B.
We know there is a polynomial p, so that if x is a yes-instance of Y, there is a t with $1t1 \leq p(1x1)$ so that $B(x, t)$ outputs yes.

Algorithm constructs a circuit C that has "two" inputs x sets of input nodes: x and t', where $1t'1 = p(1x1)$. Think of t' as t followed by "end of shing" pattern.
The Circuit C "simulate" B on x and t. Since B's running time is polynomial in \(|x| + |t|\), and \(|t| \leq p(|x|)\), B runs in only for a polynomial number of steps in x. So C needs to simulate B only for a polynomial number of steps, \((\text{polynomial in } |x|)\). So C will have size polynomial in \(|x|\).

Output node of C corresponds to output of B(x, t).
Finally, algo hard-codes x by adding one input node z. For example, if $x_i = 0$, it adds

![Diagram](image1)

and if $x_i = 1$, it adds

![Diagram](image2)

Call resulting circuit $D(x)$.
$D(x)$ has form

\[
\begin{array}{c}
\vdash \\
1 \\
\hline
D \\
1 \\
\end{array}
\]

Since $D(x)$ simulates B on x and t, $D(x)$ is satisfiable iff $\exists t$ with $1t1 \leq p(1x1)$, such that $B(x,t)$ outputs 1.

In other words, $D(x)$ is satisfiable iff x is yes-instance of Y.

End of Proof Sketch.

Transforming x to $D(x)$ is done in poly-time
Having one NP-complete problem makes it much easier to show other problems NP-complete. This is because of the following fact, which is easy to prove.

Fact. Suppose Y is NP-complete. Suppose $X \in \text{NP}$, and $Y \leq_p X$. Then X is NP-complete.

We will show Circuit-Sat's hardness \(\leq_p \text{3CNF-SAT} \). Using Since \(\text{3CNF-SAT} \in \text{NP} \), we conclude \(\text{3CNF-SAT} \) is NP-complete.
Since $3\text{CNF-SAT} \leq_p \text{IND-SET}$,
$3\text{CNF-SAT} \leq_p \text{Vertex-Cover}$,
$3\text{CNF-SAT} \leq_p \text{Set-Cover}$,
and all these problems on \mathcal{RHS}
are in \mathcal{NP}, we conclude:

IND-SET, Vertex-Cover, Set-Cover
are \mathcal{NP}-complete.

To show some new problem Z
to be \mathcal{NP}-complete, we show $Z \in \mathcal{NP}$. This is usually easy.
We pick a problem Y known to
be \mathcal{NP}-complete, we show $Y \leq_p Z$.
This can be harder, but choice of
Y can greatly help us. The homework
gives you some experience with this process.