Topological Sorting of Directed Acyclic Graphs.
(Section 3.6)

A directed graph that has no cycles is called a Directed Acyclic Graph.

The nodes vertices of such a graph could represent tasks. An edge from task \(u \) to task \(v \) means \(u \) must complete before \(v \) can begin.

In such a situation, the requirement that there be no cycles in the graph is a natural one.
Given such a graph representing tasks and dependencies, it is natural to want to order the tasks so as to respect the precedence relationships.

Problem: Given a directed acyclic graph $G = (V, E)$, find an ordering of the vertices $\{v_1, v_2, \ldots, v_n\}$ so
that for any edge \((v_i, v_j) \in E\), we have \(i \leq j\).

Such an ordering is called a topological sort of the vertices.

In the example:
It is easy to see that only graphs with no cycles admit a topological sort.

Claim: If G admits a topological sort, G is a DAG.

Now, our algorithm will show as a byproduct that every DAG has a topological ordering.

The key is the following observation.

Observation: Every DAG has a vertex with no incoming edges.

Proof: In class. See book otherwise.
This suggests the following algorithm to topologically sort DAG G.

- Find a node \(v \) with no incoming edges.
- Print \(v \)
- Delete \(v \) from \(G \) along with incident edges.
- Recursively compute a topological sort of remaining graph.

Note that remaining graph is a DAG as well. A proof by induction on the no. of vertices in the graph will show that this algorithm works correctly.