The Gale-Shapley Algorithm

During the course of the algorithm, certain pairs \((m, w) \in M \times W\) become "engaged". The set of engaged pairs forms a matching. We will say that an individual is engaged to mean that he/she is part of a pair that is engaged. An individual is said to be free if he/she is not engaged.
Initially, all $m \in M$ and $w \in W$ are free. While there is a man m who is free and hasn't proposed to every woman

Choose such a man m

let $w \leftarrow$ highest-ranked woman in m's list to whom m has not yet proposed.

m makes a proposal to w:

gf w is free then (m, w) become engaged.

Else let m' be woman to whom w is currently engaged.

gft w prefers m' to m then m remains free.

Else w prefers m to m'.

(m, w) become engaged.

(m', w) become disengaged, and so m' becomes free.

Endgf

Endif

Endwhile

Return the set of engaged pairs.
Analysis of Algorithm.

Observation 1: The G-S Algorithm terminates after at most \(n^2 \) iterations of the while loop.

Proof: Within each while loop, some man \(m \) makes a proposal to some woman \(w \). Observe that \(m \) has never made a proposal to \(w \) before. Why?

This means that a given man \(m \) proposes to a given woman \(w \) at most once. There are exactly \(n^2 \) man-woman pairs, so at most \(n^2 \) proposals are made, so there are at most \(n^2 \) iterations of while-loop.
The above observation hints that a bound on the number of steps that an implementation of the algorithm would take. Note that what is needed to implement the steps within a the while loop is basically a book-keeping mechanism. More on this later.

We now show that the less obvious facts that the G-S algorithm returns (a) a perfect matching, and (b) a stable matching.

Observation 2: Fix some woman w. w remains engaged from the point at which she receives her first proposal. The sequence of partners to which she is engaged gets better and better (in her ordering).
Observation 3 Let m be any man. Suppose m is free just before the execution of the while statement. Then there is a woman to whom he has not yet proposed.

Proof: Suppose the conclusion is false and m has proposed to all women. Then by Observation 2, all women are currently engaged. Since the set of engaged pairs form a matching, this means all that n men, thus all men, are currently engaged. So m is currently also engaged, and this contradicts the assumption that he is currently free.
Observation 4: The set \(S \) returned at termination forms a perfect matching.

Proof: The terminating condition of the while loop means that at termination there is no man who is free and has not proposed to a woman. Due to Observation 3, this means that there is no man who is free (at termination). So all men are engaged at termination, and the set of engaged pairs forms a perfect matching.
Observation 5: The set S returned by an execution of the G-S algorithm is a stable matching.

Proof: We know that S is a perfect matching. We will show that there is no instability with respect to S.

Let $(m, w') \in M \times W$ be any pair not in S. So $(m, w) \in S$ for some $w \neq w'$, and $(m', w') \in S$ for some $m' \neq m$.

\[\begin{array}{c}
 m \\ \\
 m' \\
\end{array} \quad \begin{array}{c}
 w' \\ \\
 w \\
\end{array} \]

If m did not propose to w', then we can conclude that m prefers w to w', because m's proposals are ordered by his preference. So there is no danger of (m, w') being an instability.
If m did propose to w', then since m is not currently engaged to w', w' rejected m (either at the time of m's proposal or by later breaking engagement with m) in favor of m'' to whom she was engaged.

Either $m' = m''$, or by observation 2 w' prefers m' to m''. In either case, we see that w' prefers m' to m, so (m, w') can't be an instability.

We conclude that S is stable. ❅