
Robust and Efficient Computation of the

Closest Point on a Spline Curve

Hongling Wang, Joseph Kearney, and Kendall Atkinson

Abstract. Parametric cubic spline curves are commonly used to
model the geometry of road surfaces in real-time driving simulators.
Roads are represented by space curves that define a curvilinear frame
of reference in which three-dimensional points are expressed in coordi-
nates of distance along the curve, offset from the central axis, and loft
from the road surface. Simulators must map from global Cartesian
coordinates to local road coordinates at very high frequencies. A key
component in this mapping is the computation of the closest point on
the central axis of the road to a three-dimensional point expressed in
Cartesian coordinates. The paper investigates a two-step method that
exploits the complementary strengths of two optimization techniques:
Newton’s method and quadratic minimization.

§1. Introduction

Parametric cubic spline curves provide a natural basis for modeling the
geometry of road surfaces in real-time driving simulators. The road model
is used by programs that control the behavior of autonomous vehicles and
pedestrians populating the virtual urban environment. In many simula-
tors, roads are represented by space curves that define a central axis or
spine of a ribbon-like surface [6]. A surface normal is defined at each
point on the curve allowing the ribbon to twist about its spine. The rib-
bon establishes a curvilinear coordinate system in which points in space
are expressed in coordinates of distance along the central axis, offset from
the axis, and loft from the road surface. The ribbon structure provides a
natural coordinate frame for computing the local geometry of navigable
surfaces. This geometry is important for wayfinding of autonomous agents
and also determines the spatial relationships among agents.

Curve and Surface Fitting: Saint-Malo 2002 1
XXX (eds.), pp. 1–3.

Copyright oc 2002 by Nashboro Press, Nashville, TN.

ISBN XXX.

All rights of reproduction in any form reserved.

2 H. Wang, J. Kearney, and K. Atkinson

While some simulation computations are most effectively implemented
using ribbon coordinates, other computations are most effectively imple-
mented using Cartesian coordinates. For example, behavior modules that
track roads and avoid obstacles, are most easily expressed with object lo-
cations represented in ribbon coordinates. However, the dynamics code
that computes object motions from control parameters set by object be-
haviors is most simply written in Cartesian coordinates. Because these
computations are performed at very high frequency, it is essential to have
efficient and robust code to map from ribbon coordinates to Cartesian co-
ordinates and to compute the inverse mapping from Cartesian coordinates
to local ribbon coordinates.

The mapping from Cartesian to ribbon coordinates is frequently a se-
rious computational bottleneck in driving simulators. The key component
in this mapping is the computation of the closest point on the central axis
of the ribbon to a three-dimensional point expressed in Cartesian coor-
dinates. Conventional optimization techniques such as Newton’s method
or quadratic minimization work well most of the time. However, we’ve
found that the standard techniques consistently fail (converge very slowly
or diverge) at a small number of points on many ordinary curves. Because
of the frequency with which the mappings are performed (i.e. thousands
of times a second for a modestly complex simulation) even these rare
problematic instances are likely to occur with regularity. This leads to
unacceptable computational delays and can halt a simulation if the opti-
mization procedure is not terminated.

To address weaknesses with standard optimization techniques, we
present a two stage technique that combines quadratic minimization and
Newton’s method.

§2. The Problem

A parametric cubic spline curve modeling the centerline of a curved road
can be expressed as [5],

(x(s), y(s), z(s)), 0 ≤ s ≤ L,

where s denotes arc length, L is the arc length of the entire spline curve,
and x(s), y(s), and z(s) are cubic spline functions with equally spaced
breakpoints {s0, s1, ..., sn} with s0 = 0 and sn = L. The functions x, y,
and z are C2 on [0, L].

At each time step of a simulation, the dynamics module computes
a new position in Cartesian coordinates for every moving object. Given
an object’s location in Cartesian coordinates, our problem is to find the
closest point on a road centerline to the object.

Let p0 = (x0, y0, z0) be the position of an object (see Figure 1). The
square of the distance between position p0 and position (x(s), y(s), z(s))

Closest Point on a Spline 3

0 200 400 600

100

200

300

400

500

600

700

x

y
tangent vector

p
p
1

0

Fig. 1. Vector p1p0 and the tangent vector of a cubic spline curve on p1.

on a spline curve is

D(s) = (x(s) − x0)2 + (y(s) − y0)2 + (z(s) − z0)2, (1)

where x(s), y(s), and z(s) are cubic spline functions of the parameter s.
The value s∗ that minimizes D(s) determines p1 = (x(s∗), y(s∗), z(s∗)),
the closest point to p0 on the cubic spline curve. The vector −−→p1p0 is
perpendicular to the tangent vector of the cubic spline curve on p1. The
distance between p0 and p1, which is the length of the vector −−→p1p0, is the
smallest distance between the position p0 and the cubic spline curve.

We approach the mapping computation as an optimization problem.
To meet the stringent demands of real-time simulation, it is important
that the selected optimization method converges to an accurate solution
very quickly. While the average speed of this computation matters, it is of
paramount importance that the maximum time does not overrun the time
allotted for a simulation step by the scheduler. Thus, the demands of the
application call for a method that is accurate, fast, and almost never fails.
With these requirements in mind, we examine three optimization tech-
niques: Newton’s method, quadratic minimization, and a new technique
that combines quadratic minimization and Newton’s method.

§2. Quadratic Minimization Method

Quadratic minimization uses quadratic interpolation to minimize a one-
variable function, in our case D(s). Suppose that s̃1, s̃2, and s̃3 are given
as initial estimates of s∗, the value that optimizes D(s). The quadratic

4 H. Wang, J. Kearney, and K. Atkinson

polynomial that interpolates D(s) at s̃1, s̃2, and s̃3 is given by,

P (s) =
(s − s̃2)(s − s̃3)

(s̃1 − s̃2)(s̃1 − s̃3)
D(s̃1)

+
(s − s̃1)(s − s̃3)

(s̃2 − s̃1)(s̃2 − s̃3)
D(s̃2)

+
(s − s̃1)(s − s̃2)

(s̃3 − s̃1)(s̃3 − s̃2)
D(s̃3).

The minimum of P (s) is used to approximate the minimum of D(s). The
minimum of P (s) is given by

s∗,k =
1
2
· y23D(s̃1) + y31D(s̃2) + y12D(s̃3)
s23D(s̃1) + s31D(s̃2) + s12D(s̃3)

, k = 1, 2, 3, · · · , (2)

where sij = s̃i−s̃j and yij = s̃2
i −s̃2

j for i, j ∈ {1, 2, 3}. We pick three values
from s̃1, s̃2, s̃3, and s∗,k by eliminating the value which gives the largest
P (s) among the 4 values, and continue in a like manner until some error
tolerance for P (s) is achieved. It can be shown that with a sufficiently
good set of initial guesses, the iteration will converge at a superlinear rate
to s∗ [3,4].

Quadratic minimization needs three initial estimates of s∗. In our
application, we usually have a good guess of which segment, [si, si+1],
contains s∗ based on the simulation state at the previous time step. An
object typically enters a road at one end or the other (i.e. on the first
or last segment.) As the object moves along a road, we track its position
and velocity. Knowing s∗ at the previous step and the object’s velocity,
we can predict the value of s∗ at the current step.

Because the spline segments are all of equal length, we can calculate
the index, i, of the segment containing the initial estimate,

i = 	s∗,0

l

, (3)

where l is the arc length of each segment of the spline curve. We use as
our three initial estimates of s∗ the values si,

si+si+1
2

, and si+1.
When s∗ lies near a segment boundary, error in the initial estimate

may cause us to choose the wrong segment. This is detected when the
iteration converges to a value outside the segment boundaries [si, si+1].
In this case, we attempt to solve s∗ on adjacent segments.

Sometimes we are unable to predict s∗ from previous states (for ex-
ample, when an object moves from offroad terrain to a road.) When we
are unable to compute a good initial estimate, we attempt to solve for s∗

on each successive segment of the curve.

Closest Point on a Spline 5

0 0.2 0.4 0.6 0.8 1
250

300

350

400

450

500

550

600

650

Parameter s

D
is

ta
nc

e

Fig. 2. Distance curve between p0 and points on the spline segment in Figure
1.

The road curves we seek to model are typically smooth and have low
curvature relative to their width. The width of a road surface must be
less than the radius of curvature of the road axis spline to prevent self
intersections. As a consequence, there is a single nearest point on the
spline for all points on the surface of a road. Thus, the mapping from
Cartesian coordinates to ribbon coordinates is unique.

We expect quadratic minimization method to work well for our prob-
lem because the minimum distance between a point p0 on the surface of
the road and the spine of the road is normally well-approximated by a
parabola. For example, Figure 2 graphs the minimum distance from a
point p0 to a spline segment.

We tested the quadratic minimization method on a variety of cubic
spline curves representative of road curves used in driving simulation. For
each curve, we randomly generated a cloud of points near the curve and
computed, for each of these points, the closest point on the curve. Ex-
perimental results showed that quadratic minimization converged to an
accurate solution in fewer than 8 iterations for about one third of the test
points. In the remaining cases, a solution was usually found although it
sometimes took hundreds of iterations to converge. In a small percentage
of cases the method diverged and no solution was found. Closer exam-
ination of cases in which the method diverged or converged very slowly
revealed that the early iterations made progress toward a solution, but
as the optimal value was approached it jumped about in a small interval
surrounding the optimum.

§3. Newton’s Method

The value s∗ that minimizes D(s) in formula (1) satisfies D
′
(s∗) = 0. We

can use Newton’s method to find a root of this equation. This leads to

6 H. Wang, J. Kearney, and K. Atkinson

the iteration formula

s∗,m+1 = s∗,m − D
′
(s∗,m)

D′′(s∗,m)
, m = 0, 1, 2, · · · (4)

Similar to the quadratic method, the initial estimate s∗,0 is based on the
value of s∗ computed on the last time step of the simulation. Likewise,
adjacent segments are considered when the method returns a value out of
the initial segment’s range. This method is quadratically convergent [4].

We implemented Newton’s method to optimize the distance expres-
sion (1). We tested Newton’s method with the same curves and sample
points that we used to test quadratic minimization. Experiments showed
Newton’s method converges in most, but not all, cases. Generally, New-
ton’s method found a solution more quickly than quadratic minimization
– usually in 3 to 4 iterations. However, for some of the sample points
Newton’s method required dozens or even hundreds of iterations to con-
verge. The problem cases seem to be caused by poor initial estimates.
When, after a slow start, the method approached the optimal value it
converged very quickly to the final solution. In a very small number of
cases, Newton’s method diverged jumping to values far away from the
optimal value.

§4. Combining Newton’s Method and Quadratic Minimization

Neither Newton’s method nor quadratic minimization perform satisfacto-
rily for real-time simulation. The average rate of convergence of quadratic
minimization is too slow for our application. Both methods are plagued
by the occurrence of cases in which convergence is unacceptably slow and
both methods diverge in a small number of cases.

The good news is that Newton’s method works well when given a
sufficiently good initial estimate; sometimes an accurate solution is found
in a single iteration. This is because Newton’s method takes the first-
order term and second-order term of Taylor’s expansion while truncating
the higher order terms. Therefore, as we approach the optimal value with
formula (4), the error caused by truncating higher order terms is quite
small. On the other hand, the error can be quite large when the initial
estimate is far away from the optimal value.

Comparing the convergence properties of the two methods, we observe
that their strengths complement one another. Quadratic minimization is
good at refining coarse estimates. Newton’s method is good at converging
to the optimal value quickly with a good initial guess. This leads us
to consider combining the two methods to leverage their complementary
strengths in overcoming their weaknesses. The composite algorithm begins
with quadratic minimization method to find a rough estimate that serves
as an initial guess for Newton’s method.

Closest Point on a Spline 7

Based on our experiments, we find that quadratic minimization gen-
erally finds an acceptable initial value for Newton’s method after four
iterations. By using four iterations, we allow the possibility of updat-
ing all of the initial values. Each iteration in the quadratic minimization
method produces a new estimate of the optimal value and throws away
the worst of the current estimates. After 3 iterations we have produced
3 new guesses. If some or all of the 3 initial values are poor estimates of
the optimal value, we have an opportunity to replace them all with new,
better estimates and base the 4th estimate on these new values.

§5. Results

We demonstrate the performance of quadratic minimization, Newton’s
method, and our new composite method on the parametric spline curve
shown in Figure 3. The curve is composed of 8 parametric cubic segments.
We randomly generated 30,000 points in a band around the curve and
computed, for each point, the nearest point on the spline curve. Methods
were initialized with values on the segment, i, from which the s∗ to be
estimated was selected. Figure 4 presents the convergence rates for the
three methods. The results are summarized in Table 1.

The termination criteria for all three algorithms was set to |s∗,k+1 −
s∗,k| ≤ (si+1−si) ·10−8 where [si, si+1] is the range of the parameter value
for the spline segment where the final solution lies.

The most striking aspect of the test results is that the new method
found a solution in less than 8 iterations in all 30,000 cases. In con-
trast, both quadratic minimization and Newton’s method get mired in a
significant number of cases. The new method outperforms quadratic mini-
mization in every respect; it finds solutions faster on average and its worst
case performance is capped at a reasonable value. For many points, the
new method is an iteration or two slower than Newton’s method. How-
ever, the tradeoff is that a solution is always found in modest number of
iterations. Because of the need to bound the length of a simulation time
step, it is highly desirable to minimize the maximum time of component
computations. Thus, the elimination of failures and the reduction in the
time to compute the hardest cases outweighs the small increase in time for
the easy cases. Overall, the new method provides an attractive alternative
for real-time applications.

§6. Conclusion

The closest point computation is a core component of real-time ground ve-
hicle simulation. It forms an essential step in the process of mapping from
Cartesian coordinates to road coordinates needed to place synthetic agents
on the road network. To satisfy the requirements of real-time simulation,
the closest point computation must be efficient and extremely robust.

8 H. Wang, J. Kearney, and K. Atkinson

−100 −50 0 50 100
−80

−60

−40

−20

0

20

40

60

80

Fig. 3. An cubic spline curve example composed of 8 parametric cubic curve
segments and some of the randomly chosen points.

quadratic
minimization

Newton’s
method algorithm

the newalgorithm

rate of fast convergence

 divergence
 (>8 iterations)
rate of slow convergence
 (<=8 iterations)

34.17% 89.53% 100%

65.79%

 0.04%

10.24%

 0.22%

 0

 0

Tab. 1. Performance of different methods for the cubic spline curve
example in Figure 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17~500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of iterations for convergence

pr
op

or
tio

n
of

 s
am

pl
es

quadratic minimization
Newton’s method
the combined method

Fig. 4. A Histogram displaying, for each of the three methods, the distribution
of convergence rates for 30,000 test points using the cubic spline curve
shown in Figure 3.

Closest Point on a Spline 9

The method presented in this paper is well tailored to the needs of
real-time simulation. By combining quadratic minimization and Newton’s
method, we’ve found a technique that very reliably converges to an accu-
rate solution in a small number of iterations. The method has undergone
rigorous testing in our real-time ground vehicle simulator, Hank. In 10
months of daily runs (some for periods of many hours) we have had no
failures. This practical experience over an extended period of time gives
us great confidence in the robustness and usefulness of the approach.

Acknowledgments. This work was supported in part through National
Science Foundation grants INT-9724746, EAI-0130864, and IIS-0002535.
Jim Cremer and Pete Willemsen made significant contributions to the
development of the Hank simulator.

References

1. Atkinson, K., Modelling a road using spline interpolation, Reports
on Computational Mathematics # 145, Department of Mathematics,
The University of Iowa, (2002).

2. Atkinson, K., An Introduction to Numerical Analysis, John Wiley &
Sons, Hoboken, NJ, 1989.

3. Luenberger, D., Linear and Nonlinear Programming, Addison-Wesley,
Reading, MA, 1984.

4. Wang, H., An analytical solution for free-form roads in driving sim-
ulation, Technical Report 01-04, Department of Computer Science,
The University of Iowa, (2001).

5. Wang, H., Kearney, J., and Atkinson, K., Arc-length parameterized
spline curve for real-time simulation, 5th international conference on
Curves and Surfaces, (2002).

6. Willemsen, P., Kearney, J., and Wang, H., Ribbon networks for mod-
eling navigable paths of autonomous agents in virtual urban environ-
ments, to appear in IEEE Virtual Reality Conference, 2003.

7. Willemsen, P., Behavior and Scenario Modeling For Real-Time Vir-
tual Environments, dissertation, The University of Iowa, 2000.

Hongling Wang, Joseph Kearney, and Kendall Atkinson
Department of Computer Science
The University of Iowa
Iowa City, IA 52242
howang|kearney|atkinson@cs.uiowa.edu

