22S:30/105, Statistical Methods and Computing
 Spring 2013, Instructor: Cowles
 Final Exam

Name: \qquad Course no. (30 or 105) \qquad

1. Research by Singh et al. (1999) as reported in the journal Clinical Immunology and Immunopathology is concerned with immune abnormalities in autistic children. As part of their research, they took measurements on the serum concentration of an antigen in three samples of children, autistic children, normal children, and mentallyhandicapped children (non-Down's-syndrome). All children were 10 years old or younger.

This problem uses data from only two of the samples, autistic children and mentallyhandicapped children. This dataset contains two variables:

```
concentration of the antigen (in units per milliliter of serum)
group, coded A for autistic
    M for mentally handicapped
```

I wish to use these data to infer whether the center of the population distribution of antigen concentration is the same in the population of all autistic children and the population of all mentally handicapped children.
(a) I will use a two-independent-sample method. Why is that the right thing to do for this example? (Circle all that apply.)
i. There are outliers in the boxplots.
ii. The standard deviations are unequal in the two samples.
iii. The population is less than 10 times as large as the sample.
iv. There are fewer than 10 successes and 10 failures.
v. The description gives no evidence that the samples were paired in any way.
vi. There are at least 15 observations in each sample.
vii. The sample sizes in the two samples are unequal.
(b) I have provided SAS results from a two-independent-sample t test and from the Wilcoxon rank sum test. Which test would be the better one to use for these data? Briefly justify your answer, referring to various SAS output.
(c) For the test that you chose in the preceding question, write the null and alternative hypotheses being tested. Define any statistical symbols that you use.
(d) At the 0.05 significance level, should I reject the null hypothesis? Justify your answer, referring to specific SAS output.
(e) Explain what your answer to the previous question means for antigen concentrations in the two populations of children.
(f) Circle all of the statements below that are true.
i. The Wilcoxon rank sum test is a parametric test.
ii. The two-independent-sample t-test requires the standard deviations in the two populations to be equal.
iii. An assumption of the Wilcoxon rank sum test is that the medians in the two populations are equal.
2. The dataset for this problem is described as follows (in the textbook Applied Regression by Fox):

Data on Vocabulary and Education from the 1989 General Social Survey
[1] Observation Index
[2] Education, in years
[3] Vocabulary Test Score, 10-Item Test with possible scores 0-10.
Source: 1989 General Social Survey, National Opinion Research Center. Distributed by the Inter-University Consortium for Political and Social Research.

Here are the first 10 rows of the dataset:

Obs	obsno	yrsed	score
1	1	0	5
2	2	1	1
3	3	3	1
4	4	3	3
5	5	4	1
6	6	4	0
7	7	4	1
8	8	4	2
9	9	4	4
10	10	4	5

I wish to use these data to infer about the relationship between education and vocabulary.
(a) The scatterplot possibly indicates a weak linear relationship, but it looks wierd. Why are all the data points laid out in rows and columns?
(b) From the regression output, give the point estimate and 95% confidence interval for the slope (numeric answer):
(c) In one sentence, interpret the point estmate of the slope in terms of the years of education and vocabulary.
(d) What quantity are you 95% confident lies in the confidence interval that you cited?
(e) At the 0.05 significance level, is the slope different from 0 ? Cite two different parts of the regression output to support your answer.
(f) Based on this regression model, what vocabulary score would you predict for a person with 8 years of education? (Numeric answer; show your work.)
3. Researchers wished to compare the effectiveness of four different treatment regimens for chronic renal failure in dogs. Twenty-eight dogs in stage 3 renal failure were randomly assigned to four different treatment groups (7 dogs in each group). The outcome variable was change in serum creatinine from pretreatment to 8 weeks on treatment. A negative change represented a decrease in serum creatinine, which is the hoped-for outcome.

Refer to the SAS output below in answering the following questions.
(a) ANOVA was used for the analysis. Explain briefly why ANOVA was the correct method instead of the Chi square test.
(b) Do the data appear to satisfy the assumptions of ANOVA? Explain briefly, referring to specific SAS output.
(c) Write the null and alternative hypotheses being tested by the global F test. Use standard statistical symbols. Briefly define the symbols that you use.
(d) At the 0.05 significance level, is the null hypothesis rejected? Justify your answer with specific SAS output.
(e) Which population means, if any, are significantly different from each other? Justify your answer with specific SAS output.
(f) Does this study indicate that any one of the 4 treatments is clearly the best? Explain briefly.
4. Biologists are planning to study body temperature in a particular species of finches (a kind of bird). They want to construct a confidence interval for the mean body temperature in adults of this species.
(a) The biologists are convinced that body temperatures in this species follow a normal distribution with standard deviation 1.5 degrees Fahrenheit. How many finches will they need to capture and measure in order to construct a 90% confidence interval width no greather than 2 degrees? (Numeric answer; show your work.)
(b) Without doing any calculations, state whether the biologists would need a larger sample or a smaller sample if they wanted a 95% c.i. instead of a 90% c.i.
5. Write the data type for each of the following variables. Choose from binary, nominal, ordinal, quantitative discreet, or quantitative continuous.
(a) winning scores in college football games
(b) whether or not the home team wins each college football game
(c) patients' conditions as described by the American Hospital Association: good, fair, serious, critical

SAS for problem 1

The UNIVARIATE Procedure
Variable: conc

Schematic Plots

NPAR1WAY Procedure

SAS for problem 2
Plot of score*yrsed. Legend: $A=1$ obs, $B=2$ obs, etc.

The REG Procedure
Model: MODEL1
Dependent Variable: score

Number of Observations Read 968
Number of Observations Used 968

Analysis of Variance

	Sum of					Mean Square
Source	DF	Squares	Pr $>$ F			

Root MSE	1.91956	R-Square	0.2482
Dependent Mean	5.94008	Adj R-Sq	0.2474
Coeff Var	32.31530		

SAS for problem 3
The UNIVARIATE Procedure
Variable: y

Schematic Plots

The MEANS Procedure

Analysis Variable : y

The ANOVA Procedure
Class Level Information
Class \quad Levels Values
group
4 12344

Number of Observations Read	28
Number of Observations Used	28

The ANOVA Procedure

Dependent Variable: y

	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Source	3	116.8082679	38.9360893	3.54	0.0296
Model	24	263.6647429	10.9860310		
Error	27	380.4730107			
Corrected Total	27				

R-Square	Coeff Var	Root MSE	y Mean
0.307008	135.7416	3.314518	2.441786

Source	DF	Anova SS	Mean Square	F Value	Pr $>\mathrm{F}$
group	3	116.8082679	38.9360893	3.54	0.0296
The ANOVA Procedure					
Bonferroni (Dunn) t Tests for y					
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ.					

Alpha	0.05
Error Degrees of Freedom	24
Error Mean Square	10.98603
Critical Value of t	2.87509
Minimum Significant Difference	5.0938

Means with the same letter are not significantly different.

Bon Grouping Mean N group

	A	4.534	7	4
	A			
B	A	3.951	7	2
B	A			
B	A	1.971	7	3
B				
B		-0.690	7	1

