## 22S:30/105, Statistical Methods and Computing Spring 2014, Instructor: Cowes Midterm 3

Show your work on any problems that involve calculations.

## Name :



Course no. (30 or 105)

1. We wish to estimate $p$, the population proportion of likely voters who believe the state of the economy is the most urgent national concern. We want a $99 \%$ confidence interval with a margin of error no greater than .02 . How many likely voters must be surveyed? (Assume that you have no idea of the value of $p$. Show your work.)

$$
\begin{aligned}
n & =\left(\frac{2.5)^{2}}{0.62}\right)^{5}(5) \\
& =460.25 \quad \text { mun un to 416) }
\end{aligned}
$$

2. Starting in the 1970s, medical technology allowed babies with very low birth weight (VLBW, less than about 3.3 pounds) to survive without major handicaps. A longterm study has followed 242 VLBW babies to age 20 years, along with a control group of 233 babies from the same population who had normal birth weight. At age 20, 179 of the VLBW group and 193 of the control group had graduated from high school.
(a) This is an example of (circle one):
<i. an observational study
ii. a randomized controlled study
iii. a nonrandomized experiment
iv. a matched-pairs experiment
(b) You wish to use these data to assess whether a smaller proportion of VLBW people than normal-birth-weight people graduate from high school by age 20 . Write the hypotheses that you will test. Use conventional statistical symbols. Define the symbols that you use.

$$
\begin{aligned}
& H_{o}: P_{L B}=P_{N B L} \\
& H_{1}: P_{n}+B=<P_{n}<i
\end{aligned}
$$


(c) Which of the following statistical tests could be used to test the hypotheses? Circle all that apply.
ii. F test
iii. one sample $t$ test
iv. paired t test
v. two-independent-sample test
vi. $z$ test
(d) In the same study, IQ scores were available for 113 men in the VLBW group and for 106 men in the normal-birth-weight group. You wish to use these data to test whether the average IQ is lower in the population of VLBW men than among control men from similar backgrounds. Write the hypotheses that you will test. Use conventional statistical symbols. Define the symbols that you use.

$$
\begin{aligned}
& H_{i} L_{\text {L B }}=L_{\text {NB }} \\
& H_{H} L_{\text {ven }}<L_{\text {NB }}
\end{aligned}
$$

(e) Which of the following statistical tests could be used to test the hypotheses about IQs? Circle all that apply.
i. Chi square test
ii. $F$ test
iii. one sample $t$ test

3
iv. paired $t$ test
v. two-independent-sample $t$ test
3. Drug-detection dogs have long been used to sniff out illegal drugs at border crossing, airports, and similar locations. Dogs are big and expensive to maintain. Rats are small and cheap. A study investigated whether rats could be trained to replace dogs in drug-detection work. In one study, rats were trained to rear up on their hind legs when they smelled simulated cocaine. After training, each rat was let loose on a surface with many cups sunk in it, one of which contained simulated cocaine. Four out of six trained rats succeeded in 80 out of 80 trials.
This problem concerns how we should estimate the long-term success rate $p$ of an individual rat that succeeds in every one of 80 trials.
(a) Find the rat's sample proportion $\hat{p}$ and the $95 \%$ confidence interval for $p$. ( Nu metric answer; show your work.)

$$
\begin{aligned}
\hat{p} & =\frac{\frac{80}{80}=1}{p(1-\hat{p})} \\
\text { Se. } & =\frac{1 \cdot \frac{1.6}{80}}{1+1}=0 \\
95 \% \text { ci } & = \pm 1.96(t)=1,1
\end{aligned}
$$

(b) Find the plus-four estimate $\hat{p}$ and the plus-four $95 \%$ confidence interval for $p$. (Numeric answers; show your work.)

$$
\begin{gathered}
\hat{p}=\frac{82}{84}=.976 \\
s e=\sqrt{\frac{.976(1-976)}{84}}=.0167 \\
4519+i=.976 \pm 1.96(0.0167)=0.943,1009)
\end{gathered}
$$

(c) Comment briefly on which result is more reasonable.


4. Researchers asked children in 4th, 5th, and 6th grade whether good grades, athletic ability, or popularity was their most important goal. We wish to use the data they gathered to assess whether the th graders' choices are different from 5th graders' choices.
Reference: Chase, M.A and Dimer, G.M. (1992), "The Role of Sports as a Social Determinant for Children," Research Quarterly for Exercise and Sport, 63, 418-424.
The table below summarizes the data for the 4th and Fth graders in the study.

Table of grade by choice
grade choice


| Statistics for Table of grade by choice |  |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| Statistic | VF | Value | Prob |
| - Chi-Square | 2 | 1.3583 | 0.5070 |
| Likelihood Ratio Chi-Square | 2 | 1.3647 | 0.5054 |
| Mantel-Haenszel Chi-Square | 1 | 0.3584 | 0.5494 |
| Phi Coefficient |  | 0.0824 |  |
| Contingency Coefficient |  | 0.0821 |  |
| Kramer's V |  | 0.0824 |  |

(a) In each of the two grades, what is the sample proportion that chose Popularity? (Numeric answers from SAS output.)

2

$$
\hat{p}_{4}=.2004 \quad \hat{p}_{5}=13333
$$

(b) What is the expected count of 5 th graders who chose Popularity? (Numeric answer from SAS output.)

$$
\frac{60}{200}(108=32.4 K
$$

(c) Do these data provide evidence that the proportions choosing the various goals are different in the two grades? Use the alpha $=.10$ significance level. Tell what test you used and justify your answer by citing specific SAS output.

5. For each statement below, mark "T" for true or " $F$ " for false. If the statement is false, briefly explain why.
(a) The power of a hypothesis test is the probability of correctly rejecting $H_{0}$ when $H_{0}$ is false.
$i$
(b) The power of a hypothesis test depends on the specific alternative hypothesis of interest.
lawyer
(c) You can increase the power of a test by using a snider sample size. F
(d) The power of a hypothesis test isfthe probability of making Typed error.

