22S:30/105, Statistical Methods and Computing Spring 2013, Instructor: Cowles Midterm 1

Show your work on any problems that involve calculations.

Name: _____ Course no. (30, 105, or 197) ____

- 1. What is the data type of each of the following variables (circle one for each):
 - (a) systolic blood pressure in women ages 65-74
 - i. Binary
 - ii. Nominal
 - iii. Ordinal
 - iv. Discrete quantitative
 - v. Continuous quantitative
 - (b) the number of auto thefts in Wyoming in each year from 1901-2000
 - i. Binary
 - ii. Nominal
 - iii. Ordinal
 - iv. Discrete quantitative
 - v. Continuous quantitative
 - (c) the ratings of high school choirs in a statewide competition (superior, excellent, good, fair, poor)
 - i. Binary
 - ii. Nominal
 - iii. Ordinal
 - iv. Discrete quantitative
 - v. Continuous quantitative
- 2. For each of the following variables, which shape would you expect its distribution to have? (circle one answer for each)
 - (a) lengths of oak leaves
 - i. roughly symmetric
 - ii. right skewed
 - iii. left skewed
 - (b) the amount of money spent on clothing in 2012 by each woman in Iowa City
 - i. roughly symmetric
 - ii. right skewed
 - iii. left skewed

3. The respiratory rate in healthy dogs follows a normal density with mean 22 breaths per minute and standard deviation 6 breaths per minute.

The body temperature in healthy dogs follows a normal density with mean 101.5 degrees Fahrenheit and standard deviation 0.5 degrees F.

If my dog Donny has a respiratory rate of 12 breaths per minute and a body temperature of 100 degrees F, is he more unusual with regard to respiratory rate or temperature? Justify your answer with appropriate numeric calculations.

4. A dataset on predictors of low birthweights in infants is included in the textbook Hosmer and Lemeshow (2000) *Applied Logistic Regression: Second Edition*. These data are copyrighted by John Wiley & Sons Inc. The observations in the dataset are mother-ifant pairs. Three of the variables are:

bwt	 birthweight of the infant in grams
age	 age of the mother in years at time of giving birth
smoke	 1 if the mother was a smoker; 0 otherwise

Refer to the attached SAS output in answering the following questions about this dataset.

- (a) Based on the scatterplot of bwt versus age, what is your best guess of the correlation between these two variables? (circle one)
 - i. -0.67
 - ii. -0.33
 - iii. 0.00
 - iv. 0.33
 - v. 0.67
- (b) If bwt were measured in pounds instead of grams, would the sample correlation coefficient r between bwt and age change? Explain briefly.
- (c) On the scatterplot, circle any points that would be influential if we fit a linear regression model to these data.
- (d) If bwt were measured in pounds instead of grams, would the value of the regression slope b change? Explain briefly.

- (e) What is the lowest birthweight in the group in which mothers were smokers (smoke = 1)? Give a numeric answer and explain how you got it.
- (f) The distribution of birthweights in the group in which mothers were nonsmokers (smoke = 0) is (circle one):
 - i. roughly symmetric
 - ii. skewed right
 - iii. skewed left
 - iv. multimodal
 - v. no information is given in the SAS output to answer this
- (g) Would the mean and standard deviation be good numeric summaries to report for the birthweight variable bwt in each of the groups defined by smoke = 0 and smoke = 1? (Yes or no; briefly explain your answer.)
- (h) In this dataset, are birthweights generally higher for nonsmoking mothers or smoking mothers? Justify your answer referring to SAS output.
- (i) Does the difference in birthweights between smoking and nonsmoking mothers mean that there is a correlation between mother's smoking status and infant's birthweight? (Yes or no; briefly explain your answer.)

Plot of BWT*AGE. Symbol used is '.'.

		SMOKE=0	
Stem	Leaf	#	Boxplot
48	9	1	1
46			
44	9	1	
42			
	00551577	8	
	0366814478	10	
	011355037779	12	++
	0266789479	10	
	002233377227	12	
	6668990088	10	*+*
	144468822288	12	
	24423558	8	
	04450025	8	++
	4480258	7	
	66809	5	
	9037	4	
	03	2	
	799	3	
12		1	
10	2	1	
	tiply Stem.Leaf	By 10**+2 SMOKE=1	
Stem	Leaf		Boxplot
Stem 42	Leaf	SMOKE=1	Boxplot
Stem 42 40	Leaf 4	SMOKE=1 # 1	Boxplot
Stem 42 40 38	Leaf 4 684	SMOKE=1 # 1 3	Boxplot
Stem 42 40 38 36	Leaf 4 684 344556	SMOKE=1 # 1 3 6	Boxplot
Stem 42 40 38 36 34	Leaf 4 684 344556 347	SMOKE=1 # 1 3 6 3	Boxplot
Stem 42 40 38 36 34 32	Leaf 4 684 344556 347 0602237	SMOKE=1	Boxplot ++
Stem 42 40 38 36 34 32 30	Leaf 4 684 344556 347 0602237 03488935	SMOKE=1 # 1 3 6 3 7 8	
Stem 42 40 38 36 34 32 30 28	Leaf 4 684 344556 347 0602237 03488935 21255889	SMOKE=1 # 1 3 6 3 7 8 8 8	 ++
Stem 42 40 38 36 34 32 30 28 26	Leaf 4 684 344556 347 0602237 03488935 21255889 066778	SMOKE=1	
Stem 42 40 38 36 34 32 30 28 26 24	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22 20	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22 20 18	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239 28334	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22 20 18 16	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239 28334	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239 28334	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239 28334 9	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239 28334 9	SMOKE=1	 ++
Stem 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239 28334 9	SMOKE=1	
Stem 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10	Leaf 4 684 344556 347 0602237 03488935 21255889 066778 11127770069 12005788 88239 28334 9	SMOKE=1	 ++

Multiply Stem.Leaf by 10**+2

The UNIVARIATE Procedure Variable: BWT

Schematic Plots

