22S:30/105
 Statistical Methods and Computing

Wrap-Up of Normal Distributions Intro to Regression

Lecture 5 Jan. 29, 2014
Kate Cowles 374 SH, 335-0727
kate-cowles@uiowa.edu

2

Standardizing values from other normal distributions

All normal distributions would be the same if we measured in units of size σ around the mean μ as center!

If x is an observation from a distribution that has mean μ and standard deviation σ, the standardized value of x is

$$
z=\frac{x-\mu}{\sigma}
$$

Standardized values are often called z-scores.
z-scores tell how many standard deviations the original observation is away from the mean of the distribution, and in which direction.

- If the z-score is positive, the original observation was larger than the mean μ.
- If the z-score is negative, the original observation was smaller than μ.

4

Example of z-scores

Recall that the distribution of systolic blood pressure of men aged 18-74 is approximately normal with $\mu=129 \mathrm{~mm} \mathrm{Hg}$ and $\sigma=20$ mm Hg . The standardized height is

$$
z=\frac{s b p-129}{20}
$$

If a man has $\mathrm{sbp}=157 \mathrm{~mm} \mathrm{Hg}$, his standardized sbp is

$$
z=\frac{157-129}{20}=1.4
$$

If a man has sbp $=93 \mathrm{~mm} \mathrm{Hg}$, his standardized sbp is

$$
z=\frac{93-129}{20}=-1.8
$$

Using the standard normal distribution to compute proportions for other normal distributions

Let's use the symbol X for a variable representing the systolic blood pressure of men. What proportion of men have sbp <100 ?

If a man has $\operatorname{sbp}=100$, his standardized sbp is

$$
z=\frac{100-129}{20}=-1.45
$$

According to the normal table, the proportion of values of a standard normal variable that are less than or equal to -1.45 is 0.0735 .

This proportion is the same as the proportion of X values that will be less than 100 .

Example

For women in the US between 18 and 74 years of age, diastolic blood pressure follows a normal distribution with mean is $\mu=77$ mm Hg and standard deviation $\sigma=11.6$ mm Hg .

We want to know the proportion of US women in this age group who have dbp between 60 and 100 .

General procedure for finding normal proportions

1. State the problem in terms of the observed variable X.
2. Standardize the value of interest x to restate the problem in terms of a standard normal variable Z. You may then wish to draw a picture to show the area under the standard normal curve.
3. Find the required area under the standard normal curve, using Table A and remembering

- The total area under the curve is 1.0.
- The normal distribution is symmetric.

8

1. Call the variable representing a woman's dbp X, and call the specific value for an individual woman x. X has a normal distribution with $\mu=77$ and $\sigma=11.6$. We want to compute to compute the proportion of women such that

$$
60 \leq X \leq 100
$$

2. Standardize x to produce z, a draw from a standard normal distribution.

$$
\begin{aligned}
60 & \leq X \leq 100 \\
\frac{60-77}{11.6} & \leq \frac{X-77}{11.6} \leq \frac{100-77}{11.6} \\
-1.47 & \leq Z \leq 1.98
\end{aligned}
$$

9
3. Use Table A to find

- the proportion of Z values ≤-1.47, which $=.0708$
- and the proportion of Z values ≤ 1.98, which $=.9761$.

4. So the percent of women with diastolic blood pressure between 60 and 100 is about $97.61 \%-7.08 \%=90.5 \%$.

Normal calculations going the other direction

What is the value of dbp such that 10% of women have values greater than or equal to it?

1. Use Table A to find the z-score such that 10% of a standard normal population would have values greater than or equal to it.
This is the same value such that 90% of values are less than or equal to it, namely 1.28 .
2. Convert $z=1.28$ into x.

$$
\begin{aligned}
\frac{x-\mu}{\sigma} & =z \\
\frac{x-77}{11.6} & =1.28 \\
x & =77+ \\
x & =91.85
\end{aligned}
$$

$$
x=77+(11.6)(1.28)
$$

12

Scatterplots

- represent the relationship between two different continuous variables measured on the same subjects
- each point represents the values for one subject for the two variables

Example: data reported by the Organization for Economic Development and Cooperation on its 29 member nations in 1998

- Per capita gross domestic product (a measure of wealth of the country) is on x -axis (horizontal)
- Per capita health care expenditures is on y-axis (vertical)

Positive and negative association

- Two variables are positively associated when above-average values of one tend to occur in individuals with above-average values of the other, and below-average values of both also tend to occur together.
- Two variables are negatively associated when above-average values of one tend to occur in individuals with below-average values of the other, and vice-versa.

We can describe the overall pattern of a scatterplot by

- form or shape
- direction
- strength

15
16

Linear relationships

- The form of a relationship shown by a scatterplot is linear if the points lie in a straight-line pattern.
- The linear relationship is strong if the points lie close to a line, with little scatter.

Example: per capita health care expenditures and gross domestic product

- "individuals" studied are countries
- form of relationship is roughly linear
- direction of relationship is positive
- strength: determined by how closely the points follow a clear pattern
- quite strong

Correlation

- a numeric measure of the direction and strength of the linear relationship between two continuous variables measured on the same subjects
- terminology and notation
- sample correlation coefficient r

Computing the sample correlation coefficient

- We have measured two different variables X and Y on the subjects in a study.
- There are n subjects.
- Let \bar{x} and \bar{y} be the sample means of the two variab les.
- Denote the sample standard deviation of the x variable as s_{x} and the sample standard deviation of the y variable as s_{y}.
- Then the sample correlation coefficient is computed as

$$
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

20

- Note that the first step in computing r is to standardize the measurements.
- Example: suppose X is heart rate in beats per minute and Y is body temperature in degrees Fahrenheit, and we have both heart rate and temperature measurements on $n=10$ people.
- The quantity

$$
\frac{x_{i}-\bar{x}}{s_{x}}
$$

is the standardized heart rate for person i

* how many standard deviations above or below the mean herat rate person i 's heart rate is
- Standardized values are no longer in their original units (e.g., the st andardized heart rates are not in beats per minute)
- The sample correlation coefficient r is an average of the products of the standardized heart rates and temperatures for the 10 people.

Facts about correlation

- Correlation requires that both variables be quantitative, so that we can do arithmetic computations with them.
- r has no units, and, because it uses standardized values, it does not change when we change the units of measurements of x, y, or both.
- For the same 10 people, r would not change whether we measured the heights and weights in inches and pounds or in centimeters and kilograms.
- $r>0$ indicates a positive association between the two variable; $r<0$ indicates a negative association
- r is always between -1 and +1
- values of r near 0 mean a very weak linear relationship
- values near +1 indicate a very strong positive relationship (all points lie almost exactly on a straight line)
- values near -1 indicate a very strong negative relationship (all points lie almost exactly on a straight line)
- Correlation measures only the strength of linear relationships. r may be close to 0 even if the relationship between two variables is strong, if that relationship is curved.
- The sample correlation coefficient is very sensitive to outliers.
- A high correlation between two variables does not by itself imply a causal relationship.

24

Correlation and regression

- Correlation enables us to assess the strength of a linear relationship between two variables, but it does not enable us to predict the value of one variable for a subject for whom we know the value of the other variable.
- Prediction often is an important goal of statistical analysis.
- Example: we may wish to predict an infant's birthweight based on a laboratory measurement taken on the mother during pregnancy

Response variables and explanatory variables

- response variable

- what we want to explain or predict
- also called "dependent" or "outcome" variable

- explanatory variable

- a variable that explains or influences differences in a response variable
- also called "predictor" variables, "covariates," or "independent" variables
- When making a scatterplot of such data:
- response variable goes on y-axis (vertical)
- explanatory variable goes on x -axis (horizontal)

26

- Note: Correlation analysis does not distinguish between response and explanatory variables.
- Example: The admissions director of the University of Iowa wants to guess how successful incoming students are likely to be.
- The high school GPA is part of each incoming student's record. The admissions director wishes to predict the student's UI GPA.
- What is the response variable and what is the explanatory variable?

27

Simple Linear Regression

- If a scatterplot suggests a linear relationship between 2 variables, we want to summarize the relationship by drawing a straight line on the plot.
- A regression line summarizes the relationship between a response variable and an explanatory variable.
- Both variables must be quantitative.
- definition: A regression line is a straight line that describes how a response variable Y changes as an explanatory variable X changes.
- often used to predict the value of Y that corresponds to a given value of X.

28

Recall straight lines

$$
y=a+b x
$$

- a : intercept; the value of Y when $\mathrm{X}=0$
- b : slope; how much Y changes when X increases by 1 unit

Least squares: choosing the "best" estimated line for a set of sample data
a and b are estimated by choosing a line as follows:

- for each observed value y_{i} in the sample data, compute the distance from y_{i} to the line
- square each of the distances
- add up all the squared distances
- choose the line that makes the sum of these squared distances the smallest

Using sample data to estimate the intercept and slope

- We will write an estimated regression line based on sample data as

$$
\hat{y}=a+b x
$$

- a is the estimated intercept, and b is the estimated slope
- The hat over the y means that \hat{y} is the predicted value of the response variable, not an actual observed value
- Since we are measuring PCH in dollars and PCGDP in dollars, this means for every additional dollar in PCGDP, we expect about a 9.7-cent increase in PCH .
- This means that if country A has 1 unit higher PCGDP than country B, we would expect country A to have 0.0968 higher PCH than country B.
- Note that it makes no sense in this problem to say that the intercept (-465.7) is the amount of per capital health care expenditure that we would expect in a country with $\mathrm{PCGDP}=0$.
- An estimated regression line is meaningful only for the range of X values actually observed.
- In the PCH/PCGDP problem, this is about $\$ 8000-33000$. The estimated intercept makes the linear relationship come out right over this range of X values.

