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Comparing two proportions

Recall: In a two-independent sample problem,
we want to compare two populations or the re-
sponses to two different treatments using data
from two independent samples.

When we are interested in comparing the pro-

portions of successes in two groups, the nota-
tion is:

Population Sample Sample
Population proportion size proportion

1 p1 n1 p̂1
2 p2 n2 p̂2
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We compare the populations by doing inference
about the difference

p1 − p2

between the population proportions.

The statistic that estimates this difference is

p̂1 − p̂2

the difference between the two sample propor-
tions.
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Example: Do seatbelts protect children
during car accidents?

• study of deaths among children involved in
car accidents during an 18-month period

• two simple random samples

– one sample from population of children
who were wearing seatbelts at the time of
car accident

– one sample from population of children
who were not wearing seatbelts at the time
of car accident

• parameters of interest: proportions of chil-
dren who die in car accidents from each of
these populations
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Population Sample Sample
Population proportion size proportion

seatbelts p1 123 3
123 = 0.024

no seatbelts p2 290 13
290 = 0.045

To determine whether the study provides signif-
icant evidence that seatbelts affect the propor-
tion of kids who die if they are involved in a car
accident , we test the hypotheses:

H0 : p1 − p2 = 0 or H0 : p1 = p2

Ha : p1 − p2 6= 0 or Ha : p1 6= p2

To estimate how large the difference is, we com-
pute a confidence interval for the difference p1−

p2.
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The sampling distribution of p̂1 − p̂2

• When both samples are large, the distribu-
tion of p̂1 − p̂2 is approximately normal.

• The mean of this normal distribution is p1−

p2.

• The standard deviation of the difference is
√

√

√

√

√

√

√

√

√

p1(1 − p1)

n1
+

p2(1 − p2)

n2

Because we don’t know p1 and p2, we must re-
place them with estimates. These estimates will
be different for confidence intervals versus hy-
pothesis tests.
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Confidence intervals for comparing two
proportions

To compute a c.i., we estimate the population
proportions p1 and p2 by their corresponding
sample proportions p̂1 and p̂2.

The resulting standard error of p̂1 − p̂2 is

SE =

√

√

√

√

√

√

√

√

√

p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)

n2

The approximate level-C two-sided confidence
interval is

(p̂1 − p̂2) ± z∗SE

where z∗ is the upper 1−C
2 standard normal cut-

off.
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Rules of thumb for using this confidence inter-
val:

1. Both populations are at least 10 times as
large as the samples.

2. The counts of successes and failures are 5 or
more in each sample.
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Car accident example

Population Sample Sample
Population proportion size proportion

Seatbelts p1 123 3
123 = 0.024

No seatbelts p2 290 13
290 = 0.045

p̂1 − p̂2 = −0.021

SE =

√

√

√

√

√

√

√

√

√

p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)

n2

=

√

√

√

√

√

√

√

√

(0.024)(0.976)

123
+

(0.045)(0.955)

290
= 0.0184
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The 95% two-sided confidence interval is

(p̂1 − p̂2) ± z∗SE =

(0.024 − 0.045) ± (1.96)(0.0184) =

−0.021 ± 0.0.036 =

(−0.057, 0.015)

We are 95% confident that this interval covers
the true difference between the proportions of
kids who die from car accidents in the popula-
tion who were wearing seatbelts at the time of
the accident vs. the population who were not.

The interval includes the value 0, so it is plausi-
ble based on this data that there is no difference!
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The hypothesis test

For the formal hypothesis test, the hypotheses
are:

H0 : p1 − p2 = 0 or H0 : p1 = p2

Ha : p1 − p2 6= 0 or Ha : p1 6= p2

Suppose we had set α = .05 when we were de-
signing the study.
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• We must standardize p̂1−p̂2 to get a z statis-
tic.

• We do this under the assumption that H0 is
true, that is that p1 and p2 have the same
value p.

– Instead of estimating p1 and p2 separately
in the standard deviation of the difference,
we pool the two samaples and use the over-
all sample proportion to estimate the sin-
gle population parameter p.

– The pooled sample proportion is

p̂ =
total count of successes in both samples

n1 + n2

The test statistic is

z =
(p̂1 − p̂2) − 0

√

√

√

√

√p̂(1 − p̂)




1
n1

+ 1
n2




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Car accident example

The pooled sample proportion is:

p̂ =
3 + 13

123 + 290
=

16

413
= 0.039

The z statistic is:

z =
(0.024 − 0.045) − 0

√

√

√

√

√(0.039)(0.961)




1
123 + 1

290





= −1.01
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To get the p-value for the two sided test, we
look for the area under a standard normal curve
that is farther away from 0 than -1.01 in either
direction.

Table A gives .156 as the area to the left of -1.01.

p − value = 2 ∗ (0.156) = 0.312

We cannot reject the null hypothesis. This par-
ticular set of sample data does not provide ev-
idence that the proportion of children dying in
car accidents differs between the population of
those wearing seatbelts at the time of the acci-
dent and the population of those not.
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Contingency Tables and the Chi-square
test

An equivalent way of comparing two population
proportions, that generalizes to more than two
populations.

Begin by presenting the data as a two-way table,
with rows representing levels of one variable and
columns representing levels of the other.

Seatbelt example:

Seatbelts Died Did not die Total
Yes 3 120 123
No 13 277 290

Total 16 397 413
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To test the hypotheses

H0 : p1 − p2 = 0 or H0 : p1 = p2

Ha : p1 − p2 6= 0 or Ha : p1 6= p2

using the two-way table, we must compute the
expected counts. These are the counts we
would expect (except for random variation) if
H0 were true.

expected count =
row total × column total

table total

If H0 were true, there would be just one p shared
by both populations.

Our best estimate is again the pooled sample
proportion p̂ = 0.039



17

Seatbelt example

Observed counts (for reference)

Seatbelts Died Did not die Total
Yes 3 120 123
No 13 277 290

Total 16 397 413

Expected counts

Seatbelts Died Did not die Total
Yes 4.8 118.2 123
No 11.3 278.7 290

Total 16 397 413
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The Chi-Square Test

• Recall that the expected counts were com-
puted under the assumption that the null

hypothesis was true.

• We can test the null hypothesis by determin-
ing whether the differences between the ob-
served and expected counts are too large to
be likely to be due to chance.

• Notation

– Oi is the observed count in cell i

– Ei is the expected count in cell i
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The Chi-square statistic

The statistic that we use for this test is the sum

over all the cells in the table of (observed count−expected count
expected count

The formula in mathematical notation is

X2 =
rc
∑

i=1

(Oi − Ei)
2

Ei

where rc is the total number of cells in the table.

• r is the number of rows

• c is the number of columns
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• Think of X2 as a measure of the distance of
the observed counts from the expected counts.

• Like any distance, X2

– is always zero or positive

– is zero only when the observed counts are
exactly equal to the expected counts

• Large values of X2 are evidence against H0.

– indicate that observed counts are far away

from what we would expect if H0 were
true.

• The Chi-square statistic X2 follows a Chi-

square distribution ( χ2 distribution) with
(r − 1)(c − 1) degrees of freedom.
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The Chi-Square test for the car-accidents
example

X2 =
(3 − 4.8)2

4.8
+

(120 − 118.2)2

118.2

+
(13 − 11.3)2

11.3
+

(277 − 278.7)2

278.7
= 0.969

Since we have 2 rows and 2 columns in our table,
the degrees of freedom is

(r − 1)(c − 1) = 1(1) = 1

We will carry out our hypothesis test at α = .05.
According to Table E, the .05 cutoff under the
Chi-square distribution with 1 degree of freedom
is 3.84.

The Chi-square test is always 2-sided. For the
Chi-square test, we always reject if the test statis-
tistic is larger than the cutoff value.
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Our computed value, 0.969, is smaller than this
cutoff. Therefore we cannot reject H0. This
result is consistent with what we got with both
the confidence interval and the z test.
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When does Chi-square test give accu-
rate enough inference?

• rule of thumb: when expected counts in all
cells are ≥ 5

• not quite satisfied in this example


