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Parametric methods

• based on the assumption that the popula-
tion(s) from which our samples are drawn
follow a distribution, the general form of
which is known

– e.g. normal or binomial

• research interest is in estimating, or test-
ing a hypothesis about, one or more pop-
ulation parameters

• examples: z tests, t tests, and ANOVA
for making inference about means of pop-
ulations assumed to be normal
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“Nonparametric” or “distribution-
free” statistical methods

• allow for testing hypotheses that are not
statements about population parameter
values

• may be used when the form of the distri-
bution of the sampled population is un-
known

• can be used when data being analyzed
consist merely of rankings or classifica-
tions

– i.e. when arithmetic operations required
for parametric procedures cannot be
done

– example: data on patient conditions
reported as “better,” “same,” or “worse”
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Example for the Sign Test

• We wish to compare the effectiveness of
two ointments (A, B) in reducing sun-
burn in people whose skin is sensitive to
sunlight.

• For each person in the study, we ran-
domly select either the left arm or the
right arm and apply ointment A. We then
apply ointment B to the same area of the
other arm.

• We then expose the person to 1 hour of
sunlight and compare the two arms with
respect to degree of redness.

• We can make only the following qualita-
tive assessments:

1. “A” arm is not as red as “B” arm.

2. “A” arm is redder than “B” arm.

3. Arms are equally red.
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How might we compare the ffectiveness of
the two ointments if we were able to mea-

sure redness on a quantitative scale?

In the situation described here, we cannot
observe the actual values of within-person
differences in redness betweem the A arm
and the B arm.

What we can observe are the signs of the
differences:

1. “A” arm is not as red as “B” arm (+)

2. “A” arm is redder than “B” arm (-)

3. Arms are equally red (0)
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The Sign Test

The null hypothesis of the sign test is that
in the underlying population of differences,
the median difference M is 0.

H0 : M = 0.

The alternative hypothesis may be either
one-sided or two-sided.

H0 : M > 0

H0 : M < 0

H0 : M 6= 0
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To carry out the sign test:

• Ignore the pairs (or observations) with
difference of 0.

• Denote the number of remaining pairs as
n.

• Count the number of plus signs, and de-
note it D.

• Note that under the null hypothesis, we
would expect approximately equal num-
bers of plus and minus signs.

– more precisely, under the null hypoth-
esis, D follows a binomial distribution
with success probability p = 1/2 and
number of trials n

– This binomial distribution has

mean = np =
n

2

standarddeviation =
√

np(1 − p) =

√

√

√

√

√

√

√
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• We must evaluate how likely we would
have been to obtain a value of D as ex-
treme as what we got, or more extreme,
if the null is true.

• Your textbook gives the test statistic for
use with a normal approximation to the
binomial distribution. This is appropri-
ate for use if n ≥ 20. The value is com-
pared to the standard normal distribu-
tion.

• Otherwise, we will use the binomial dis-
tribution directly.
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The sign test for the skin ointment
data

We wish to do a two-sided test, i.e.

Ha : M 6= 0

at the α = .05 significance level.

The results for 45 subjects are:

1. 22 people had the “A” arm less red (+)

2. 18 people had the “B” arm less red (-)

3. 5 people had no difference (0)

• n = 45 - 5 = 40

• D = 22

• normal approximation is valid because n ≥
20.

z+ =
D − (n/2)

√

n/4
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=
22 − 20√

10
= 0.632

For a 2-sided test, we must compare this
value to the .025 cutoff for the standard nor-
mal distribution, which is 1.96.

Because 0.632 < 1.96, we cannot reject H0.

Equivalently, we can determine the p-value
of our test by finding P (z > 0.632) =≈
.264.

• This would be the p-value for a 1-sided
test.

• To find the p-value for our 2-sided test,
we multiply by 2.

p = 2(.264) = .528 > α = .05
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So again, we cannot reject H0. We conclude
that the data do not provide evidence that
one ointment is better than the other.
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The sign test with small sample size

Suppose that instead of 40 patients with
non-zero differences, we had had

1. 5 people had the “A” arm less red (+)

2. 3 people had the “B” arm less red (-)

3. 37 people had no difference (0)

Then

• n = 45 - 37 = 8

• D = 5

• normal approximation is inappropriate be-
cause n < 20.

– we will do exact calculation of the p-
value using the binomial distribution
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Because D > n/2 = 4, we will compute

P (D ≥ 5|H0) = P (D = 5) + P (D = 6)

+P (D = 7) + P (D = 8)

= .2188 + .1094 + .0313 + .0039

= 0.3634

This is a one-sided p-value. We must mul-
tiply by 2 to get the approximate 2-sided
p-value.

2(0.3634) = 0.7268 > .05

So again we would not reject H0.

14

More on the sign test

• Can be used with single-sample or paired-
sample problems

• Frees us from having to make any as-
sumptions about the underlying distribu-
tion of differences

• If we have any information about the mag-
nitude of the individual differences, the
sign test wastes it.


