Single-sample hypothesis testing about a proportion

Example:

- We know from large databases of medical records that, among patients diagnosed with lung cancer when they are 40 years of age or older, the proportion that survive for 5 years after diagnosis is 0.082.
- We are interested in determining whether the proportion of 5-year survivors is the same in the population of patients diagnosed with lung cancer before age 40.
- The parameter of interest is the population proportion \(p \) in the population diagnosed with lung cancer before age 40.
- We will get data on a sample of persons under 40 who have been diagnosed with lung cancer.

Hypotheses

The null hypothesis says that the population proportion \(p \) in those diagnosed before age 40 is the same as the known proportion in those diagnosed at a later age.

\[
H_0 : p = 0.082
\]

The alternative hypothesis is two-sided because we do not know in advance in which direction a difference might go. (Younger people in general are more likely to survive for 5 years than older people, but perhaps a more severe form of lung cancer occurs in younger people.)

\[
H_a : p \neq 0.082
\]

Significance level

We choose to do our test at the \(\alpha = .05 \) significance level.

Data

From a 1991 article in the journal Cancer, we obtain data on a sample of 52 person diagnosed with lung cancer at age 40 or younger. Only 6 of them survived for 5 years after diagnosis.

The sample proportion was

\[
\hat{p} = \frac{6}{52} = 0.115
\]

The test statistic

The \(z \) test statistic is:

\[
z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}
\]

\[
= \frac{0.115 - 0.082}{\sqrt{\frac{0.082(1-0.082)}{52}}}
\]

\[
= 0.87
\]
The p-value

Because the test is two-sided, the p-value is the area under the standard normal curve more than 0.87 away from 0 in either direction. Table A tells us that the area to the left of -0.87 is 0.192. The p-value is twice this area:

\[p = 2(0.192) = 0.384 \]

Conclusion

Can we reject the null hypothesis that \(p = 0.082 \)?

A proportion of survivors as far from 0.082 as what we found would happen 38% of the time if a sample of 52 patients were drawn from a population in which the true proportion of survivors was 0.082. Our result does not show that the proportion of 5-year lung cancer survivors is different in the population of patients diagnosed before age 40 from in the population diagnosed at age 40 or later.

The 95% confidence interval for the proportion \(p \) of patients diagnosed with lung cancer before age 40 who will survive 5 years is:

\[\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.115 \pm 1.96 \sqrt{\frac{(0.115)(1-0.115)}{52}} \]

\[= 0.115 \pm 0.087 \]

\[= (0.028, 0.202) \]

Choosing the sample size for a desired margin of error

- Recall that the margin of error is the quantity that we add to and subtract from a point estimate in order to compute the right and left endpoints of a confidence interval.
- For a proportion, the confidence interval is

\[\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \]

- so the margin of error is

\[z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \]
• Since we don’t know in advance what \(\hat{p} \) is going to be, we have to guess it. Call our guess \(p^* \). Some ways to make an “educated guess”:
 – Use a pilot study or past experience with similar studies.
 – Use \(p^* = 0.5 \). This is conservative, since it will give the largest possible margin of error.
• Then if \(m \) is the desired margin of error, the required sample size \(n \) is:
\[
 n = \left(\frac{z^*}{m} \right)^2 p^*(1 - p^*)
\]

• How would the sample size change if you had no previous information about what proportion to expect?

Example:
• PTC is a substance that has a strong bitter taste for some people and is tasteless for others. The ability to taste PTC is inherited. About 75% of Italians can taste PTC, for example.
• You want to estimate the proportion of Americans with at least one Italian grandparent who can taste PTC.
• Starting with the 75% estimate for Italians, how large a sample must you test in order to estimate the proportion of PTC tasters within \(\pm 0.04 \) with 95% confidence?

Sample size calculation for a hypothesis test regarding a single population proportion

• Consider a one-sided test:
\[
 H_0 : p = p_0 \\
 H_a : p < p_0
\]
• To compute sample size, we need to specify:
 – the significance level \(\alpha \)
 – a specific alternative hypothesis \(p = p_1 \)
 – the power \(1 - \beta \)
• Then the sample size \(n \) is
\[
 n = \left(\frac{z_{1-\alpha} \sqrt{p_0(1-p_0)} + z_{1-\beta} \sqrt{p_1(1-p_1)}}{(p_1 - p_0)} \right)^2
\]
Example:

- Suppose in the PTC example that instead of just estimating \(p \) in Americans with at least one Italian grandparent, we wished to test the hypotheses:

\[
H_0 : p = .75 \\
H_a : p < .75
\]

- We choose \(\alpha = .05 \).
 - We would not consider the difference to be scientifically meaningful unless the true \(p \) were .60 or less, so we set \(p_1 = .6 \).
 - We want 90% power if the true \(p \) is .6.

- According to Table A

 \[
 z_{1-\alpha} = 1.645 \\
 z_{1-\beta} = 1.28
 \]

- So our sample size is

\[
\begin{align*}
n &= \frac{z_{1-\alpha} \sqrt{p_0(1-p_0) + z_{1-\beta} \sqrt{p_1(1-p_1)}}}{(p_1 \pm p_0)}^2 \\
&= \frac{1.645 \sqrt{.75(.25) + 1.28 \sqrt{.6(.4)}}}{(.6 - .75)}^2 \\
&= 8.929^2 \\
&= 79.73 \text{ or } 80
\end{align*}
\]

For a two-sided test, use \(z_{1-\frac{\alpha}{2}} \) instead of \(z_{1-\alpha} \) in the formula:

\[
n = \left[\frac{z_{1-\alpha} \sqrt{p_0(1-p_0) + z_{1-\beta} \sqrt{p_1(1-p_1)}}}{(p_1 - p_0)} \right]^2
\]

In our example, this would be:

\[
n = \left[\frac{1.96 \sqrt{.75(.25) + 1.28 \sqrt{.6(.4)}}}{(.6 - .75)} \right]^2 \\
&= 9.838^2 \\
&= 96.8 \text{ or } 97