Experiments and observational studies

- In an experiment, the investigator studies the effect of varying some factor that he/she controls.
- In an observational study, the investigator merely observes and records information on the subjects but does not manipulate any factors.
- It is very difficult to establish causation between one variable and another.
 - especially difficult based on observational studies

Koch’s postulates

- In 1890 the German microbiologist Robert Koch attempted to develop criteria for establishing whether a particular microorganism causes a particular disease
- not considered completely satisfactory today
- “... first, the organism is always found with the disease, in accord with the lesions and clinical stage observed; second, the organism is not found with any other disease; third, the organism, isolated from one who has the disease and cultured through several generations, reproduces the disease in a susceptible experimental animal. Even where an infectious disease cannot be transmitted to animals, the ‘regular’ and ‘exclusive’ presence of the organism proves a causal relationship.”

More formal criteria for judging whether an observed association is causal

- strength of the association
- dose-response relationship
- consistency of the association
 - Is the association observed in one study observed in other study populations, in studies using different methods, etc.
- temporally correct association
- specificity of the association
 - the alleged effect is rarely if ever observed without the alleged cause
- plausibility
Association does not by itself imply causation.

Confounding

Two variables (explanatory or lurking) are **confounded** when their effects on a response variable cannot be separated.

Populations and samples

- A **population** is the *entire set* of items about which we might wish to draw conclusions.
 - Example: I wish to find out the average income of families of current UI undergrads.
 - Example: A political pollster would like to know the Presidential preference of every registered voter in South Carolina.
 - Some populations we would like to study are hypothetical.
 * Example: all pregnant women who are infected with the HIV virus now and in the future
- A **sample** is the subset of the population that we can actually study (on which we can measure values of variables).
 - How a sample is drawn from a population affects how valid it is to apply conclusions based on the sample to the population.
 - The **sample design** is the method used to choose the sample from the population.
Bias

- The results of a study are biased if they are subject to systematic error.
 - i.e., there is something about the way the study is carried out such that, if we did many studies in this way, on average we’d get the wrong conclusions!
- One source of bias is if the sample is not representative of the entire population.
- The design of a study is biased if it systematically favors certain outcomes.

Kinds of sample designs

- simple random sample (SRS)
 - a sample of size n individuals chosen in such a way that every set of n individuals in the population has an equal chance to be the sample
 - the ideal
 - biased or unbiased?
- voluntary response sample
 - consists of people who choose themselves by responding to a general appeal
 - biased or unbiased?
- convenience sample
 - consists of subjects who are easy to get
 - biased or unbiased?

judgment sample

- consists of subjects chosen by an expert to be representative of the population
- biased or unbiased?

How simple random samples are drawn

- each member of the population is uniquely identified in some way
 - example: the population of interest is UI students; each has a unique ID number
- intuitive idea: the identifiers are put in a hat and drawn at random
- usually actually done by a computer
- can be done manually using a table of random digits
 - first assign a unique numeric label to each member of the population
 - use table of digits to select labels at random.
Example

- I wish to get an idea as to how well undergrad students in 22S:30 like the textbook. To do this, I want to administer a lengthy interview and I have time to do only 3. Therefore, I want to draw a simple random sample of size 3 from the population of 24 undergrad students in the class.

- Begin by giving each student a unique numeric identifier.
 1. Derek A
 2. Kara
 3. Courtney
 4. Karen
 5. Cory
 6. Catherine
 7. Katie H
 8. Ryan
 9. Jenna
 10. Peter
 11. Anne
 12. Todd
 13. Anthony
 14. Katie McE
 15. Kimbra
 16. Phil
 17. Derek N
 18. Tuyet
 19. Ben
 20. Mitchell
 21. Nicole
 22. Cristina
 23. Joanna
 24. Jessica

- Use Table B in your book to find the first 3 of these identifiers that appear.

Table of random digits

- Each entry in the table is equally likely to be any of the 10 digits from 0 to 9 inclusive.
- The entries are “independent” of each other; i.e., knowledge of what digits are in one part of the table gives no information about the digits in any other part.
Using SAS to draw a simple random sample

```sas
options linesize = 79 ;

data students ;
input name $9. ;
datalines ;
Derek A
Kara
Courtney
Karen
Cory
Catherine
Katie H
Ryan
Jenna
Peter
Anne
Todd
Anthony
Katie McE
Kimbra
Phil
Derek N
Tuyet
Ben
Mitchell
Nicole
Cristina
Joanna
Jessica
;
proc print data = students ;
run ;
```

Output

<table>
<thead>
<tr>
<th>Obs</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Derek A</td>
</tr>
<tr>
<td>2</td>
<td>Kara</td>
</tr>
<tr>
<td>3</td>
<td>Courtney</td>
</tr>
<tr>
<td>4</td>
<td>Karen</td>
</tr>
<tr>
<td>5</td>
<td>Cory</td>
</tr>
<tr>
<td>6</td>
<td>Catherine</td>
</tr>
<tr>
<td>7</td>
<td>Katie H</td>
</tr>
<tr>
<td>8</td>
<td>Ryan</td>
</tr>
<tr>
<td>9</td>
<td>Jenna</td>
</tr>
<tr>
<td>10</td>
<td>Peter</td>
</tr>
<tr>
<td>11</td>
<td>Anne</td>
</tr>
<tr>
<td>12</td>
<td>Todd</td>
</tr>
<tr>
<td>13</td>
<td>Anthony</td>
</tr>
<tr>
<td>14</td>
<td>Katie McE</td>
</tr>
<tr>
<td>15</td>
<td>Kimbra</td>
</tr>
<tr>
<td>16</td>
<td>Phil</td>
</tr>
<tr>
<td>17</td>
<td>Derek N</td>
</tr>
<tr>
<td>18</td>
<td>Tuyet</td>
</tr>
<tr>
<td>19</td>
<td>Ben</td>
</tr>
<tr>
<td>20</td>
<td>Mitchell</td>
</tr>
<tr>
<td>21</td>
<td>Nicole</td>
</tr>
<tr>
<td>22</td>
<td>Cristina</td>
</tr>
<tr>
<td>23</td>
<td>Joanna</td>
</tr>
<tr>
<td>24</td>
<td>Jessica</td>
</tr>
</tbody>
</table>
Proc plan

proc plan seed = 72950 ;
factors a = 3 of 24 ;
run ;

The PLAN Procedure

Factor Select Levels Order
a 3 24 Random

----a---

1 24 7

Using the same seed will reproduce exactly
the same “random” choice!

proc plan seed = 72950 ;
factors a = 3 of 24 ;
run ;

The PLAN Procedure

Factor Select Levels Order
a 3 24 Random

----a---

1 24 7

Using a different seed will produce a different set of choices.

proc plan seed = 32542 ;
factors a = 3 of 24 ;
run ;

Procedure PLAN

Factor Select Levels Order
a 3 24 Random

----a---

2 16 4

Drawing from a larger population

proc plan seed = 241 ;
factors a = 100 of 1000 ;
run ;

Procedure PLAN

Factor Select Levels Order
a 100 1000 Random

576 792 359 517 110 598 859 144 9 52 462 262 673 202 648
630 705 286 412 597 868 488 621 240 674 651 923 298 419 865
550 120 441 921 159 644 269 861 775 529 148 939 50 281 57
119 944 692 265 432 470 311 586 69 329 143 562 974 996 304
901 787 607 819 844 518 264 822 897 271 820 239 435 341 442
487 773 687 649 41 424 24 306 863 178 762 423 233 834 368
864 481 362 584 28 479 694 235 337 175

Other statistical sampling designs

- Statistical sampling is based on *chance*.
- A **probability sample** gives each member of the population of interest a *known* chance of being selected.
- **stratified random sampling**
 - procedure
 * first divide the population into *strata*
 - groups of similar individuals
 * draw a simple random sample from each stratum
 * combine the SRSs to form the full sample
 - ensures that each stratum is represented in the overall sample

Other possible sources of bias in surveys

- **Undercoverage**
 - The list of individual items from which a sample is chosen is called the *sampling frame*
 - Some segments of the population of interest are likely to be missed even with careful sampling methods because they are not included in the sampling frame
 * Example: telephone surveys systematically miss the 6% of American households without phones.

- **Nonresponse**
 - Some members of the chosen sample cannot be contacted or refuse to answer.
 - This biases the results of the survey if the members who do not respond are different from the general population.
 - Example: in surveys that include questions about household income, families with unusually low or unusually high incomes are less likely to answer that question than are families with moderate income.
• Response bias
 – Respondents may lie, especially about sensitive subjects.
 – Attributes or behavior of interviewers can make this more likely.

 – Example: In a survey concerning roles of family members, a father might tend to respond differently to the question “How many hours per week do you spend caring for your children on average?” depending on the gender of the interviewer.

• Bias due to wording of questions
 – leading questions
 – confusing questions
 – questions involving undefined terms
 – Example: Do you eat 5 servings of fruits and vegetables per day?