Hypotheses

The null hypothesis says that the population proportion p in those diagnosed before age 40 is the same as the known proportion in those diagnosed at a later age.

$$H_0 : p = 0.082$$

The alternative hypothesis is two-sided because we do not know in advance in which direction a difference might go. (Younger people in general are more likely to survive for 5 years than older people, but perhaps a more severe form of lung cancer occurs in younger people.)

$$H_a : p \neq 0.082$$

Significance level

We choose to do our test at the $\alpha = .05$ significance level.

Data

From a 1991 article in the journal *Cancer*, we obtain data on a sample of 52 persons diagnosed with lung cancer at age 40 or younger. Only 6 of them survived for 5 years after diagnosis.

The sample proportion was

$$\hat{p} = \frac{6}{52} = 0.115$$

The test statistic

The z test statistic is:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

$$= \frac{0.115 - 0.082}{\sqrt{\frac{0.082(1-0.082)}{52}}}$$

$$= 0.87$$

Single-sample hypothesis testing about a proportion

Example:

- We know from large databases of medical records that, among patients diagnosed with lung cancer when they are 40 years of age or older, the proportion that survive for 5 years after diagnosis is 0.082.
- We are interested in determining whether the proportion of 5-year survivors is the same in the population of patients diagnosed with lung cancer before age 40.
- The parameter of interest is the population proportion p in the population diagnosed with lung cancer before age 40.
- We will get data on a sample of persons under 40 who have been diagnosed with lung cancer.
The p-value

Because the test is two-sided, the p-value is the area under the standard normal curve more than 0.87 away from 0 in either direction. Table A tells us that the area to the left of -0.87 is 0.192. The p-value is twice this area:

\[p = 2(0.192) = 0.384 \]

Conclusion

Can we reject the null hypothesis that \(p = 0.082 \)?

A proportion of survivors as far from 0.082 as what we found would happen 38% of the time if a sample of 52 patients were drawn from a population in which the true proportion of survivors was 0.082. Our result does not show that the proportion of 5-year lung cancer survivors is different in the population of patients diagnosed before age 40 from in the population diagnosed at age 40 or later.

The 95% confidence interval for the proportion \(p \) of patients diagnosed with lung cancer before age 40 who will survive 5 years is:

\[
\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = 0.115 \pm 1.96 \sqrt{\frac{0.115(1 - 0.115)}{52}}
\]

\[
= 0.115 \pm 0.087
\]

\[
= (0.028, 0.202)
\]

Choosing the sample size for a desired margin of error

- Recall that the margin of error is the quantity that we add to and subtract from a point estimate in order to compute the right and left endpoints of a confidence interval.
- For a proportion, the confidence interval is

\[
\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
\]

- so the margin of error is

\[
z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
• Since we don’t know in advance what \(\hat{p} \) is going to be, we have to guess it. Call our guess \(p^* \). Some ways to make an “educated guess”:
 – Use a pilot study or past experience with similar studies.
 – Use \(p^* = 0.5 \). This is conservative, since it will give the largest possible margin of error.
• Then if \(m \) is the desired margin of error, the required sample size \(n \) is:
 \[
n = \left(\frac{z^*}{m} \right)^2 p^*(1 - p^*)
\]

• How would the sample size change if you had no previous information about what proportion to expect?

Example:

• PTC is a substance that has a strong bitter taste for some people and is tasteless for others. The ability to taste PTC is inherited. About 75% of Italians can taste PTC, for example.
• You want to estimate the proportion of Americans with at least one Italian grandparent who can taste PTC.
• Starting with the 75% estimate for Italians, how large a sample must you test in order to estimate the proportion of PTC tasters within \(\pm 0.04 \) with 95% confidence?

Sample size calculation for a hypothesis test regarding a single population proportion

• Consider a one-sided test:
 \[
 H_0 : p = p_0 \\
 H_a : p < p_0
 \]
• To compute sample size, we need to specify:
 – the significance level \(\alpha \)
 – a specific alternative hypothesis \(p = p_1 \)
 – the power \(1 - \beta \)
• Then the sample size \(n \) is
 \[
 n = \left[\frac{z_{1-\alpha} \sqrt{p_0(1 - p_0)} + z_{1-\beta} \sqrt{p_1(1 - p_1)}}{p_1 - p_0} \right]^2
 \]
Example:

- Suppose in the PTC example that instead of just estimating p in Americans with at least one Italian grandparent, we wished to test the hypotheses:

 \[H_0 : p = .75 \]
 \[H_a : p < .75 \]

- We choose

 - $\alpha = .05$
 - We would not consider the difference to be scientifically meaningful unless the true p were .60 or less, so we set $p_1 = .6$.
 - We want 90% power if the true p is .6.

- According to Table A

 - $z_{1-\alpha} = 1.645$
 - $z_{1-\beta} = 1.28$

- So our sample size is

 \[
 n = \frac{1.645\sqrt{.75(.25)} + 1.28\sqrt{.6(.4)}}{(.6 -.75)}^2
 \]

 \[
 = 8.929^2
 \]

 \[
 = 79.73 \text{ or } 80
 \]

For a two-sided test, use $z_{1-\frac{\alpha}{2}}$ instead of $z_{1-\alpha}$ in the formula:

\[
\begin{align*}
 n &= \frac{\left[z_{1-\frac{\alpha}{2}}p_0(1-p_0) + z_{1-\beta}\sqrt{p_1(1-p_1)} \right]^2}{(p_1 - p_0)} \\
 &\quad \text{In our example, this would be:}
\end{align*}
\]

\[
\begin{align*}
 n &= \frac{\left[1.96\sqrt{.75(.25)} + 1.28\sqrt{.6(.4)} \right]^2}{(.6 -.75)} \\
 &\quad = 9.838^2 \\
 &\quad = 96.8 \text{ or } 97
\end{align*}
\]