
1

STAT:5400
Computing in Statistics

Intro to relational database concepts

Lecture 15
Oct. 10, 2018

Kate Cowles
374 SH, 335-0727

kate-cowles@uiowa.edu

2

Introduction to relational database con-
cepts

• database: a system for storing data

• relational database model has become the
de-facto standard for the design of databases
both large and small

• storage of data for use in statistical analysis
ideally should follow this model

• today’s lecture deals with two related topics

– efficient storage of data (applies to setting
up datafiles for use by SAS or any other
analysis system)

– some aspects of relational database soft-
ware (such as Microsoft Access)

Material drawn in part from
www.citilink.com/~jgarrick/vbasic/database/rdbms.html and http:

//www.citilink.com/~jgarrick/vbasic/database/fundamentals.html

3

What is a relational database?

• relational database stores all its data in “ta-
bles”

• table is a set of rows and columns

– set has no predefined sort order for its el-
ements

– “record” is database terminology for a row
or observation

– “field” or “attribute” is database termi-
nology for a column or variable

4

Basic concepts

• Primary and Foreign Keys

• Queries

• Referential Integrity

• Normalization



5

Flat files (how not to store complex
data)

• simplest model for a database

• a single table which includes fields for each
element you need to store

• you have probably worked with flat file databases,
at least in the form of spreadsheets

• waste storage space and are problematic to
maintain

6

Example: customer order entry system

• You’re managing the data for a company with
a number of customers, each of which will be
placing multiple orders.

• Each order can have one or more items

7

Data that we wish to record for each
component of the application

• Customers

– Customer Number

– Company Name

– Address

– City, State, ZIP Code

– Phone Number

• Orders

– Order Number

– Order Date

– PO Number

• Order Line Items

– Item Number

– Description

– Quantity

– Price

8

Problems with a flat file for represent-
ing this data

• Each time an order is placed, you’ll need to
repeat the customer information, including
the Customer Number, Company Name, etc.

• What’s worse is that for each item, you not
only need to repeat the order information
such as the Order Number and Order Date,
but you also need to continue repeating the
customer information as well.

• Let’s say there’s one customer who has placed
two orders, each with four line items. To
maintain this tiny amount of information,
you need to enter the Customer Number and
Company Name eight times.

• What if the company should send you a change
of address?



9

• unacceptable aspects of flat file storage

– effort required to maintain the data

– likelihood of data entry errors causing in-
consistency in customer address between
records

10

Solution: use a relational model for the
data

• each order entered is related to a customer
record

• each line item is related to an order record

• relational database management system (RDBMS)
is a piece of software that manages groups of
records which are related to one another

11

Break flat file into three tables

• Customers

– CustID

– CustName

– CustAddress

– CustCity

– CustState

– CustZIP

– CustPhone

• Orders

– OrdID

– OrdCustID (new field)

– OrdDate

– OrdPONumber

12

• OrderDetails

– ODID

– ODOrdID (new field)

– ODDescription

– ODQty

– ODPrice



13

Keys

• key: a field that can be used to identify a
record

• key fields may contain

– data element you are storing or derived
from that data

– an arbitrary value

• example: for the Customers table

– could use the company name as a key, but
if you ever had two companies with the
same name, your system would be broken

– alternatively could use some derivation of
the company name in an effort to preserve
enough of the name to make it easy for
users to derive the name based on the key,
but that often breaks down when the ta-
bles become large

– may be easiest to simply use an arbitrary
whole number

14

Primary and Foreign Keys

• primary key: a field that uniquely identifies
a record in a table

– No two records can have the same value
for a primary key.

– Each value in a primary key will identify
one and only one record.

• foreign key: represents the value of primary
key for a related table

– foreign keys are the cornerstone of rela-
tional databases

– example: in Orders table, OrdCustID field
would hold the value of the CustID field
for the customer who placed the order.

∗ By doing this, we can attach the infor-
mation for the customer record to the
order by storing only the one value.

15

Queries

• so far we’ve

– broken down our order entry system into
three tables

– added foreign keys to the Orders and Or-
derDetails tables

• Now, rather than repeating the Customers
table data for each Orders table record, we
simply record a customer number in the Or-
dCustID field.

• By doing this, we can change the information
in the Customers table record and have that
change be reflected in every order placed by
the customer.

• This is accomplished by using queries to re-
assemble the data.

• query: a view of data which represents the
data from one or more tables

16

Reassembling the data for analysis and
presentation

• human users of the system will only be able
to view data in two dimensions

– become rows and columns in a table either
on the screen or on paper

• to see orders placed by our customers

– link the Customers and Orders tables us-
ing the CustID field from Customers and
the OrdCustID field from Orders

∗ value of the OrdCustID field represents
a related record in the Customers table
and is equal to the CustID value from
that record

– by joining together the two tables based
on this relationship, we can add fields from
both tables and see all orders along with
any pertinent customer data



17

Referential Integrity

• purpose is to maintain validity of data

• example: what would happen if you needed
to delete a customer?

– if the customer has orders, the orders will
be orphaned

– must have a means in place to enforce that
for each order, there is a corresponding
customer

• two ways that that database management
system can enfore “referential integrity”

– by cascading deletions through the related
tables

– by preventing deletions when related records
exist

18

Normalization

• essentially the process of distilling the struc-
ture of the database to remove repeating groups
of data into separate tables.

• example: we have normalized customers and
orders by creating a separate table for the
orders

19

• sometimes need to sacrifice normalization to
practicality

– in Customers table, not really necessary to
include the CustCity and CustState fields
since a US ZIP Code uniquely defines a
city and state in the US

– to fully normalize the Customers table,
would need to remove the CustCity and
CustState fields and create a table, per-
haps called ZIPCodes, which included these
fields

– then include only the CustZIP field and
join the Customers table to the ZIPCodes
table in order to reconstruct the full ad-
dress

– problem: adds overhead of an additional
join in every query where you need to have
the full address available

20

Example of a poorly designed database

• StudentName

• AdvisorName

• CourseID1

• CourseDescription1

• CourseInstructorName1

• CourseID2

• CourseDescription2

• CourseInstructorName2



21

Normal forms

• First normal form: no repeating groups

• Second normal form: no nonkey attributes
depend on a portion of the primary key.

• Third normal form: no attributes depend on
other nonkey attributes.

22

First normal form

• What we’re looking for is repeating groups
of columns.

• example: students and courses file

– columns for course information have been
duplicated to allow the student to take two
courses

– problem occurs when the student wants to
take three course or more

• set of columns in a table with field names
that end in numbers xx1, xx2, xx3, etc., is
clear warning signal that you have repeating
groups in the table.

• A common exception to this would be a ta-
ble of street addresses, where you might have
AddressLine1, AddressLine2, etc., rather than
using a single field for multiple line addresses.

23

Putting the courses data into first nor-
mal form

• first table: Students

– StudentID

– StudentName

– AdvisorName

• second table: StudentCourses

– SCStudentID

– SCCourseID

– SCCourseDescription

– SCCourseInstructorName

• identify primary keys and foreign keys

24

Putting the data in second normal form

• No nonkey attributes depend on a portion of
the primary key.

• applies only to tables where the primary key
is defined by two or more columns.

• if there are columns which can be identified
by only part of the primary key, they need
to be in their own table.

• example: the StudentCourses table

– the primary key is the combination of SC-
StudentID and SCCourse ID.

– table also contains the SCCourseDescrip-
tion and the SCCourseInstructorName columns,
which depend only on the SCCourseID col-
umn



25

Putting these data into second normal
form

• first table: Students

– StudentID

– StudentName

– AdvisorName

• second table: StudentCourses

– SCStudentID

– SCCourseID

• third table: Courses

– CourseID

– CourseDescription

– CourseInstructorName

26

Adding more detail for realism

– first table: Students

∗ StudentID
∗ StudentName

∗ StudentPhone

∗ StudentAddress

∗ StudentCity

∗ StudentState

∗ StudentZIP

∗ AdvisorName

∗ AdvisorPhone

– second table: StudentCourses

∗ SCStudentID
∗ SCCourseID

– third table: Courses

∗ CourseID
∗ CourseDescription

∗ CourseInstructorName

∗ CourseInstructorPhone

27

Third normal form

• No attributes depend on other nonkey at-
tibutes.

• means that all the columns in the table con-
tain data about the entity that is defined by
the primary key

• example: in Students table, we have two data
items about the student’s advisor: the name
and phone number. The balance of the data
pertains only to the student and so is appro-
priate in the Students table.

• same logic applies to the instructor informa-
tion in the Courses table. The data for the
instructor is not dependent on the primary
key CourseID.

28

Completing the normalization

• first table: Students

– StudentID

– StudentName

– StudentPhone

– StudentAddress

– StudentCity

– StudentState

– StudentZIP

– StudentAdvisorID

• second table: Advisors

– AdvisorID

– AdvisorName

– AdvisorPhone

• third table: Instructors

– InstructorID

– InstructorName



29

– InstructorPhone

• fourth table: StudentCourses

– SCStudentID

– SCCourseID

• fifth table: Courses

– CourseID

– CourseDescription

– CourseInstructorID

30

Summary

• primary and foreign keys, which are used to
define relationships

• referential integrity, which is used to main-
tain the validity of the data

• normalization, which is used to develop a
data structure.


