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Terminology

e simulation: a numerical technique for conducting
experiments on the computer

e Monte Carlo simulation: a computer experiment
inolving random sampling from probability
distributions

— what statisticians usually mean by “simulations”

Basics

e simulation studies are commonly done to evaluate the
performance of a frequentist statistical procedure, or to
compare the performance of two or more different
procedures for the same problem

e enable us to see what happens “when many many
samples of the same size are drawn from the same
population”

e properties of estimators that are often evaluated by
simulation

— bias
— mean squared error
— coverage of confidence intervals

e properties of hypothesis tests also can be evaluated by

simulation studies
— size
— power

e simulation studies are experiments, and the things you
know about experimental design and sample size
calculation apply

Rationale

e Properties of statistical methods must be established
before the methods can safely be used in practice.

e But exact analytical derivations of properties are rarely
possible

e Large sample approximations to properties are often
possible

— evaluation of the relevance of the approximation to
(finite) sample sizes likely to be encountered in
practice is needed

e Analytical results may require assumptions such as
normality

— What happens when these assumptions are
violated? Analytical results, even large sample ones,
may not be possible



Questions to be addressed regarding an
estimator or testing procedure

e [s an estimator biased in finite samples? What is its
sampling variance?

e How does it compare to competing estimators on the
basis of bias, precision, etc.?

® Does a procedure for constructing a confidence interval
for a parameter achieve the claimed nominal level of
coverage?

e Does a hypothesis testing procedure attain the claimed
level or size?

e If so, what power is possible against different
alternatives to the null hypothesis? Do different test
procedures deliver different power?

Simulation for properties of estimators

Simple example: Compare three estimators for the mean
of a distribution based on i.i.d. draws Y7,...,Y,

e Sample mean T
e Sample 20% trimmed mean 7

e Sample median 7)

Remarks:

e If the distribution of the data is symmetric, all three
estimators indeed estimate the mean

o If the distribution is skewed, they do not
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Role of Monte Carlo simulation

e Goal is to evaluate sampling distribution of an
estimator under a particular set of conditions (sample
size, error distribution, etc.)

e Analytic derivation of exact sampling distribution is
not feasible

e Solution: Approximate the sampling distribution
through simulation

— Generate S independent data sets under the
conditions of interest

— Compute the numerical value of the estimator /test
statistic T'(data) for each data set, yielding
Ti,...,Ts

e If S is large enough, summary statistics across

Ti,...,Ts should be good approximations to the true

sampling properties of the estimator/test statistic

under the conditions of interest

Simulation procedure

For a particular choice of p, n, and true underlying
distribution

e Generate independent draws Y7, ..., Y, from the
distribution

e Compute 7, 73 76)
e Repeat S times =
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e Compute for k =1,2,3
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Relative efficiency

For a particular choice of p,

Relative efficiency: For any estimators for which
E(TW) = E(T®)=p

var(T™M)

var(T®@)

is the relative efficiency of estimator 2 to estimator 1

RE =

e When the estimators are not unbiased it is standard to
compute

MSE(T™M)

MSE(T®)

o In either case RE < 1 means estimator 1 is preferred
(estimator 2 is inefficient relative to estimator 1 in this
sense)

RE =

Normal data:

> out <- generate.normal(S,n,mu,sigma)

> outsampmean <- apply(out$dat,l,mean)

> outtrimmean <- apply(out$dat,1,trimmean)
> outmedian <- apply(out$dat,1,median)

> summary.sim <- data.frame(mean=outsampmean,trim=outtrimmean,
median=outmedian)

> results <- simsum(summary.sim,mu)

> view(round (summary.sim,4),5)
First 5 rows

mean trim median
1 0.7539 0.7132 1.0389
2 0.6439 0.4580 0.3746
3 1.5553 1.6710 1.9395
4 0.5171 0.4827 0.4119
5 1.3603 1.4621 1.3452
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R code for example

> set.seed(3)
> S <= 1000
>n <- 15

> trimmean <- function(Y){mean(Y,0.2)}

> mu <- 1

> sigma <- sqrt(5/3)

> results

true value

# sims

MC mean

MC bias

MC relative bias

MC standard deviation
MC MSE

MC relative efficiency
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1.000
00.000
0.985
-0.015
-0.015
0.331
0.110
1.000

Sample mean Trimmed mean

1.
1000.
.987
.013
.013
.348
.121
.905

000
000

Median

1.
1000.
0.
-0.
-0.
0.

0.

0.

000
000
992
008
008
398
158
694



Performance of estimates of uncertainty

How well do estimated standard errors represent
the true sampling variation?

e F.g., For sample mean T<1>(Y1, L Yn) =Y
—1 n

SE(Y):\/SE, s2=(n-1) jgl(yj—?ﬂ

e MC standard deviation approximates the true
sampling variation
e Compare average of estimated standard

errors to MC standard deviation

For sample mean: MC standard deviation
0.331

> outsampmean <- apply(out$dat,1,mean)
> sampmean.ses <- sqrt(apply(out$dat,1,var)/n)
> ave.sampmeanses <- mean(sampmean.ses)

> round(ave.sampmeanses,3)
[1] 0.329

Simulations for properties of hypothesis
tests

Stmple example: Size and power of the usual
t-test for the mean

Hy:p=pg vs. Hy:p#

e To evaluate whether size/level of test achieves
advertised av generate data under p = g and
calculate proportion of rejections of Hy

e Approximates the true probability of
rejecting Hy when it is true

e Proportion should ~ «

e To evaluate power, generate data under some
alternative pu # po and calculate proportion of
rejections of Hy

e Approximates the true probability of rejecting
Hy when the alternative is true (power)

o [f actual size is > «, then evaluation of power
is flawed
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Usual 100(1-a)% confidence interval for

JI%

Based on sample mean

>

>

>

Y

—

S — S
- tl—a/2,n—1ﬁ Y+ tl—a/Q,n—lﬁ

e Does the interval achieve the nominal level of

coverage 1 — a?

elig a=0.05

t05 <- qt(0.975,n-1)

coverage <- sum((outsampmean-tOSn*sampmean.ses <= mu) &
(outsampmean+t05n*sampmean.ses >= mu))/S

coverage

[1] 0.949

>

Size/level of test:

set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3)
mu0 <- 1; mu <-1
out <- generate.normal(S,n,mu,sigma)

ttests <-
(apply(out$dat,1,mean)-mu0)/sqrt (apply (out$dat,1,var)/n)

t05 <- qt(0.975,n-1)
power <- sum(abs(ttests)>t05)/S

power

[1] 0.051



Power of test: Simulation study principles

> set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3) i
Se% 88 ? Siema = sar Issue: How well do the Monte Carlo quantities

>mu0 <- 1; mu <- 1.75 approximate properties of the true sampling

distribution of the estimator/test statistic?
> out <- generate.normal(S,n,mu,sigma)

> ttests <- e [s § = 1000 large enough to get a feel for the
+ (apply(out$dat,1,mean)-mu0)/sqrt (apply (out$dat,1,var)/n) true sampling properties? How “believable”

- ?
> £05 <~ qt(0.975,n-1) are the results’

e A simulation is just an experiment like any

> power <- sum(abs(ttests)>t05)/S . . .
P other, so use statistical principles!

> pover e Each data set yields a draw from the true
[1] 0.534 . L .
sampling distribution, so S is the “sample
size” on which estimates of mean, bias, SD,
etc. of this distribution are based
e Select a “sample size” (number of data sets
S) that will achieve acceptable precision of
the approximation in the usual way!
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Principle 1: A Monte Carlo simulation Choosing S: Estimator for 6 (true value
is just like any other experiment 6p)
e Caretul planning is required e Estimation of mean of sampling
e Fuctors that are of interest to vary in the distribution/bias:
oxpcrimcnt:. sample sizF: n, distribution of the JarT = 8) = \fearlT) — v ( g1d T) _ SI\)/(CEFS) —d
data, magnitude of variation, ... =t
o : here d is th tabl
e Fach combination of factors is a separate WHETE @ 15 The acceptable error )
simulation, so that many factors can lead to ~ §_ {SD(T%)}
very large number of combinations and thus d?
number of simulations e Can “guess” SD(T) from asymptotic theory,
— time consuming preliminary runs

e Use experimental design principles

e Results must be recorded and saved in a
systematic, sensible way

e Don’t choose only factors favorable to a
method you have developed!

e “Sample size S (number of data sets in each
simulation) must deliver acceptable
precision. . .
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Choosing S: Coverage probabilities,
size, power

e Estimating a proportion p (= coverage
probability, size, power) = binomial
sampling, e.g. for a hypothesis test

p(1 —p)
S

Z
Z = #rejections ~ binomial(S, p) = Jvar (E) = J

e Worst case is at p=1/2 = 1//4S

e d acceptable error = S = 1/(4d2); e.g.,
d = 0.01 yields S = 2500

e For coverage, size, p = 0.05
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Principle 3: Keep S small at first

e Test and refine code until you are sure
everything is working correctly before
carrying out final “production” runs

e Get an idea of how long it takes to process
one data set

Principle 4: Set a different seed for each

run and keep records

e Ensure simulation runs are independent

e Runs may be replicated if necessary

Principle 5: Document your code
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Principle 2: Save everything!

e Save the individual estimates in a file and
then analyze (mean, bias, SD, etc) later

—as opposed to computing these summaries
and saving only them

o Critical if the simulation takes a long time to
run!

e Advantage: can use software for summary
statistics (e.g., SAS, R, etc.)



