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Basics

• simulation studies are commonly done to evaluate the
performance of a frequentist statistical procedure, or to
compare the performance of two or more different
procedures for the same problem

• enable us to see what happens “when many many
samples of the same size are drawn from the same
population”

• properties of estimators that are often evaluated by
simulation

– bias

– mean squared error

– coverage of confidence intervals

• properties of hypothesis tests also can be evaluated by
simulation studies

– size

– power

• simulation studies are experiments, and the things you
know about experimental design and sample size
calculation apply
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Terminology

• simulation: a numerical technique for conducting
experiments on the computer

• Monte Carlo simulation: a computer experiment
inolving random sampling from probability
distributions

– what statisticians usually mean by “simulations”
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Rationale

• Properties of statistical methods must be established
before the methods can safely be used in practice.

• But exact analytical derivations of properties are rarely
possible

• Large sample approximations to properties are often
possible

– evaluation of the relevance of the approximation to
(finite) sample sizes likely to be encountered in
practice is needed

• Analytical results may require assumptions such as
normality

– What happens when these assumptions are
violated? Analytical results, even large sample ones,
may not be possible
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Questions to be addressed regarding an
estimator or testing procedure

• Is an estimator biased in finite samples? What is its
sampling variance?

• How does it compare to competing estimators on the
basis of bias, precision, etc.?

• Does a procedure for constructing a confidence interval
for a parameter achieve the claimed nominal level of
coverage?

• Does a hypothesis testing procedure attain the claimed
level or size?

• If so, what power is possible against different
alternatives to the null hypothesis? Do different test
procedures deliver different power?
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Role of Monte Carlo simulation

• Goal is to evaluate sampling distribution of an
estimator under a particular set of conditions (sample
size, error distribution, etc.)

• Analytic derivation of exact sampling distribution is
not feasible

• Solution: Approximate the sampling distribution
through simulation

– Generate S independent data sets under the
conditions of interest

– Compute the numerical value of the estimator/test
statistic T (data) for each data set, yielding
T1, . . . , TS

• If S is large enough, summary statistics across
T1, . . . , TS should be good approximations to the true
sampling properties of the estimator/test statistic
under the conditions of interest
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Simulation for properties of estimators

Simple example: Compare three estimators for the mean µ
of a distribution based on i.i.d. draws Y1, . . . , Yn

• Sample mean T (1)

• Sample 20% trimmed mean T (2)

• Sample median T (3)

Remarks:

• If the distribution of the data is symmetric, all three
estimators indeed estimate the mean

• If the distribution is skewed, they do not
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Simulation procedure

For a particular choice of µ, n, and true underlying
distribution

• Generate independent draws Y1, . . . , Yn from the
distribution

• Compute T (1), T (2), T (3)

• Repeat S times ⇒
T

(1)
1 , . . . , T

(1)
S ; T

(2)
1 , . . . , T

(2)
S ; T

(3)
1 , . . . , T

(3)
S

• Compute for k = 1, 2, 3

̂mean = S−1
S∑

s=1
T (k)
s = T

(k)
, ̂bias = T

(k) − µ

̂SD =

√√√√√√(S − 1)−1
S∑

s=1
(T

(k)
s − T (k)

)2,

̂MSE = S−1
S∑

s=1
(T (k)

s − µ)2 ≈ ̂SD
2

+ ̂bias
2
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Relative efficiency

For a particular choice of µ,

Relative efficiency: For any estimators for which
E(T (1)) = E(T (2)) = µ

RE =
var(T (1))

var(T (2))

is the relative efficiency of estimator 2 to estimator 1

•When the estimators are not unbiased it is standard to
compute

RE =
MSE(T (1))

MSE(T (2))

• In either case RE < 1 means estimator 1 is preferred
(estimator 2 is inefficient relative to estimator 1 in this
sense)
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R code for example

> set.seed(3)

> S <- 1000

> n <- 15

> trimmean <- function(Y){mean(Y,0.2)}

> mu <- 1

> sigma <- sqrt(5/3)

10

Normal data:

> out <- generate.normal(S,n,mu,sigma)

> outsampmean <- apply(out$dat,1,mean)

> outtrimmean <- apply(out$dat,1,trimmean)

> outmedian <- apply(out$dat,1,median)

> summary.sim <- data.frame(mean=outsampmean,trim=outtrimmean,

+ median=outmedian)

> results <- simsum(summary.sim,mu)

> view(round(summary.sim,4),5)

First 5 rows

mean trim median

1 0.7539 0.7132 1.0389

2 0.6439 0.4580 0.3746

3 1.5553 1.6710 1.9395

4 0.5171 0.4827 0.4119

5 1.3603 1.4621 1.3452
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> results

Sample mean Trimmed mean Median

true value 1.000 1.000 1.000

# sims 1000.000 1000.000 1000.000

MC mean 0.985 0.987 0.992

MC bias -0.015 -0.013 -0.008

MC relative bias -0.015 -0.013 -0.008

MC standard deviation 0.331 0.348 0.398

MC MSE 0.110 0.121 0.158

MC relative efficiency 1.000 0.905 0.694
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Performance of estimates of uncertainty

How well do estimated standard errors represent
the true sampling variation?

• E.g., For sample mean T (1)(Y1, . . . , Yn) = Y

SE(Y ) =
s√
n
, s2 = (n− 1)−1 n∑

j=1
(Yj−Y )2

•MC standard deviation approximates the true
sampling variation

• Compare average of estimated standard
errors to MC standard deviation

For sample mean: MC standard deviation
0.331

> outsampmean <- apply(out$dat,1,mean)

> sampmean.ses <- sqrt(apply(out$dat,1,var)/n)

> ave.sampmeanses <- mean(sampmean.ses)

> round(ave.sampmeanses,3)

[1] 0.329
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Usual 100(1-α)% confidence interval for
µ:

Based on sample mean

[ Y − t1−α/2,n−1
s√
n
, Y + t1−α/2,n−1

s√
n

]

• Does the interval achieve the nominal level of
coverage 1− α?

• E.g. α = 0.05

> t05 <- qt(0.975,n-1)

> coverage <- sum((outsampmean-t05n*sampmean.ses <= mu) &

(outsampmean+t05n*sampmean.ses >= mu))/S

> coverage

[1] 0.949
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Simulations for properties of hypothesis
tests

Simple example: Size and power of the usual
t-test for the mean

H0 : µ = µ0 vs. H1 : µ 6= µ0

• To evaluate whether size/level of test achieves
advertised α generate data under µ = µ0 and
calculate proportion of rejections of H0

• Approximates the true probability of
rejecting H0 when it is true

• Proportion should ≈ α

• To evaluate power, generate data under some
alternative µ 6= µ0 and calculate proportion of
rejections of H0

• Approximates the true probability of rejecting
H0 when the alternative is true (power)

• If actual size is > α, then evaluation of power
is flawed
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Size/level of test:

> set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3)

> mu0 <- 1; mu <- 1

> out <- generate.normal(S,n,mu,sigma)

> ttests <-

+ (apply(out$dat,1,mean)-mu0)/sqrt(apply(out$dat,1,var)/n)

> t05 <- qt(0.975,n-1)

> power <- sum(abs(ttests)>t05)/S

> power

[1] 0.051
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Power of test:

> set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3)

> mu0 <- 1; mu <- 1.75

> out <- generate.normal(S,n,mu,sigma)

> ttests <-

+ (apply(out$dat,1,mean)-mu0)/sqrt(apply(out$dat,1,var)/n)

> t05 <- qt(0.975,n-1)

> power <- sum(abs(ttests)>t05)/S

> power

[1] 0.534
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Simulation study principles

Issue: How well do the Monte Carlo quantities
approximate properties of the true sampling
distribution of the estimator/test statistic?

• Is S = 1000 large enough to get a feel for the
true sampling properties? How “believable”
are the results?

• A simulation is just an experiment like any
other, so use statistical principles!

• Each data set yields a draw from the true
sampling distribution, so S is the “sample
size” on which estimates of mean, bias, SD,
etc. of this distribution are based

• Select a “sample size” (number of data sets
S) that will achieve acceptable precision of
the approximation in the usual way!

18

Principle 1: A Monte Carlo simulation
is just like any other experiment

• Careful planning is required

• Factors that are of interest to vary in the
experiment: sample size n, distribution of the
data, magnitude of variation, . . .

• Each combination of factors is a separate
simulation, so that many factors can lead to
very large number of combinations and thus
number of simulations

– time consuming

• Use experimental design principles

• Results must be recorded and saved in a
systematic, sensible way

• Don’t choose only factors favorable to a
method you have developed!

• “Sample size S (number of data sets in each
simulation) must deliver acceptable
precision. . .
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Choosing S: Estimator for θ (true value
θ0)

• Estimation of mean of sampling
distribution/bias:

√
var(T − θ0) =

√
var(T ) =

√√√√√var


S−1

S∑

s=1
Ts


 =

SD(Ts)√
S

= d

where d is the acceptable error

⇒ S =
{SD(Ts)}2

d2

• Can “guess” SD(Ts) from asymptotic theory,
preliminary runs
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Choosing S: Coverage probabilities,
size, power

• Estimating a proportion p (= coverage
probability, size, power) ⇒ binomial
sampling, e.g. for a hypothesis test

Z = #rejections ∼ binomial(S, p) ⇒
√√√√√var



Z

S


 =

√√√√√p(1− p)

S

•Worst case is at p = 1/2 ⇒ 1/
√

4S

• d acceptable error ⇒ S = 1/(4d2); e.g.,
d = 0.01 yields S = 2500

• For coverage, size, p = 0.05

21

Principle 2: Save everything!

• Save the individual estimates in a file and
then analyze (mean, bias, SD, etc) later

– as opposed to computing these summaries
and saving only them

• Critical if the simulation takes a long time to
run!

• Advantage: can use software for summary
statistics (e.g., SAS, R, etc.)
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Principle 3: Keep S small at first

• Test and refine code until you are sure
everything is working correctly before
carrying out final “production” runs

• Get an idea of how long it takes to process
one data set

Principle 4: Set a different seed for each
run and keep records

• Ensure simulation runs are independent

• Runs may be replicated if necessary

Principle 5: Document your code
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