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Introduction

In class, we mostly used SAS to prepare and clean data. However, as a full-fledged programming language,
R also has its own data cleaning and preparation capabilities, especially with user-contributed packages.
The main one that this project aims to showcase is the data.table package (Dowle and Srinivasan 2016),
and how it can be used to prepare data efficiently. We will compare this with R’s native data preparation
capabilities, and compare the difference in computational speed and programming difficulty.

This project will also show other tasks that R is capable of executing with the right packages, such as scraping
data from the internet, and geospatial data visualization.

The data.table package

First released in 2006, this package is the highlight of this project. It introduces a new class of R object,
called data.table, which is an extension of the data.frame object. The syntax for code in the data.table
package is written to resemble SQL syntax, which makes programming much easier. At the same time, the
code is written in the programming language C for speed. It is able to work quickly even with large datasets,
reading it in and performing most operations within seconds. Coupled with other packages such as reshape2
(Wickham 2007), this equips R with the data preparation capabilities comparable with top line software such
as SAS and SQL.

Dataset and objectives to be accomplished

The data that we will use for illustration purposes is the county unemployment data by the Bureau of Labor
Statistics (BLS). The BLS releases monthly unemployment data at the state, county and even metropolitan
levels at a rather timely manner, with a time lag of at most 2 or 3 months.

The county-level data that we are looking at (http://download.bls.gov/pub/time.series/la/la.data.64.County)
is rather large (1.5 million observations, 300MB), which makes it a good candidate to compare the time
savings that are possible with the data.table package. Being geographically indexed, it also allows us to
showcase the knowledge and tools needed when working with such data.

The following tasks are reasonable within an applied statistician’s line of work, and so we will work towards
these as an end-goal to illustrate the data preparation process:

1. Identify the county that each entry in the dataset is associated with, and add in the appropriate county
ID

2. Identify the state that each county is associated with, and use the state abbreviation to identify each
state

3. Consolidate the various measurements for each month-year-county combination into a single entry

4. Reconstruct state and federal-level unemployment rates, using only county-level data

5. Reformat county-level unemployment into wide format: with counties as the columns, and month-year
as the rows (this is useful for certain analyses, such as PCA)

6. Reformat federal-level unemployment with the months as columns and years as rows (useful to identify
seasonal trends)

7. Create a heat map of the most recent county-level unemployment rates
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Reading in the data

As we know, read.table reads in data as a data.frame object. Similarly, the fread function reads in data
as a data.table object. We will define datdt to be the data read in the format of a data.table, and datdf
to be the data in data.frame form.

To save time in reading in the data, we use the argument colClasses in the statement, which plays a similar
role to input in SAS. This saves the time that R uses to identify which classes that each variable belongs to.
Also, since missing values are coded as “-”, we use the argument na.strings in the data.frame environment;
as for data.table, we read that particular column in as a character variable (since its na.strings option
merely coerces the column the character anyway):

library(data.table)
setwd("~/U Iowa/STAT5400")
system.time(datdt <- fread("la.data.64.County.txt", header = TRUE,

colClasses = c("character", "factor", "factor", "character", "factor")))

##
Read 61.6% of 4465684 rows
Read 4465684 rows and 5 (of 5) columns from 0.270 GB file in 00:00:03

## user system elapsed
## 2.77 0.07 2.84

system.time(datdf <- read.table("la.data.64.County.txt", header = TRUE,
colClasses = c("character", "factor", "factor", "numeric", "factor"),
sep="\t", na.strings = "-"))

## user system elapsed
## 23.96 0.74 24.86

data.table is clearly faster. Unfortunately, it wasn’t able to read in the factor variables correctly:

str(datdt)

## Classes 'data.table' and 'data.frame': 4465684 obs. of 5 variables:
## $ series_id : chr "LAUCN010010000000003" "LAUCN010010000000003" "LAUCN010010000000003" "LAUCN010010000000003" ...
## $ year : chr "1990" "1990" "1990" "1990" ...
## $ period : chr "M01" "M02" "M03" "M04" ...
## $ value : chr "6.4" "6.6" "5.8" "6.6" ...
## $ footnote_codes: chr "" "" "" "" ...
## - attr(*, ".internal.selfref")=<externalptr>

So we will need to convert the character classes manually. defining colClasses did save some time in reading
in the data though.

system.time(datdt[, c("year", "period", "value", "footnote_codes")
:= list(as.factor(year), as.factor(period), as.numeric(value),

as.factor(footnote_codes))])

## Warning: NAs introduced by coercion
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## user system elapsed
## 1.45 0.13 1.58

This is syntax that is unique to data.table: instead of the usual datdt[,year]<- as.factor(year) etc.,
updating the column is instead done within the [], first defining the columns to be updated, then using := to
define how to update each of them (using a list). This saves having to refer back to the original data.table
every time (using the $ sign with data.frame), and condenses code as well.

Now let’s take a look at the data that we have. To save typing, we will define head3 to look at the first three
rows of a table:

head3 <- function(x){head(x, 3)}
head3(datdt)

## series_id year period value footnote_codes
## 1: LAUCN010010000000003 1990 M01 6.4
## 2: LAUCN010010000000003 1990 M02 6.6
## 3: LAUCN010010000000003 1990 M03 5.8

str(datdt)

## Classes 'data.table' and 'data.frame': 4465684 obs. of 5 variables:
## $ series_id : chr "LAUCN010010000000003" "LAUCN010010000000003" "LAUCN010010000000003" "LAUCN010010000000003" ...
## $ year : Factor w/ 27 levels "1990","1991",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ period : Factor w/ 13 levels "M01","M02","M03",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ value : num 6.4 6.6 5.8 6.6 6 7 6 6.7 7.2 7.1 ...
## $ footnote_codes: Factor w/ 4 levels "","c","n","p": 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, ".internal.selfref")=<externalptr>

head3(datdf)

## series_id year period value footnote_codes
## 1 LAUCN010010000000003 1990 M01 6.4
## 2 LAUCN010010000000003 1990 M02 6.6
## 3 LAUCN010010000000003 1990 M03 5.8

str(datdf)

## 'data.frame': 4465684 obs. of 5 variables:
## $ series_id : chr "LAUCN010010000000003 " "LAUCN010010000000003 " "LAUCN010010000000003 " "LAUCN010010000000003 " ...
## $ year : Factor w/ 27 levels "1990","1991",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ period : Factor w/ 13 levels "M01","M02","M03",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ value : num 6.4 6.6 5.8 6.6 6 7 6 6.7 7.2 7.1 ...
## $ footnote_codes: Factor w/ 4 levels " ","c",..: 1 1 1 1 1 1 1 1 1 1 ...

So it seems now the data is in the classes that we need.
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Getting a unique identifier: FIPS codes and the {substr} function

Despite being county-level data, there is no label for each county within the columns. The only column that
seems to resemble an ID is the series_id column, so we will need to extract a unique identifier from it.

This is where knowledge of how counties are indexed is useful. In the US, each county is assigned a unique
5-number code known as the FIPS code. The first two numbers represent the state that the county is located
in: the state code, whereas the last 3 number uniquely identify the county within the state.

Knowing this, and after looking through the various accompanying description files, it is not too hard to
figure out that the first 5 numbers after the letters characterize the FIPS code:

• When it changes, the first two numbers usually remain constant.

• It has many 0’s after it. (At finer levels of division, these will not be 0)

Another piece of information embeeded in series_id is the measure code. According to the description
files, this is a 2-number code which tells us what value is describing: an unemployment rate (03), total
unemployment (04), total employed (05), or total labor force (06). Looking at the value variable while paying
attention to series_id, it is not too hard to figure out that measure is the last 2 numbers of series_id.

So we will use the substr function in R to extract these pieces of information. The syntax is

substr(x, start, stop)

Where x is the string vector of which a substring is desired, start is the start position of the substring
desired, and stop is the end position.

datdt[, c("fips", "measure") := list(as.factor(substr(series_id, start = 6, stop = 10)),
as.factor(substr(series_id, start = 19, stop = 20)))]

datdf$fips <- as.factor(substr(datdf$series_id, start = 6, stop = 10))
datdf$measure <- as.factor(substr(datdf$series_id, start = 19, stop = 20))

Consolidating data: reshape2 and the dcast function

Now that we have the measure codes, we will need to consolidate all of them for each year-period-county
combination. This is where the dcast function from the reshape2 package comes in handy; it converts data
from long format to wide format. The basic syntax is

dcast(dat, formula, ...)

Where dat is the object to be cast into wide format, and formula is the type of casting desired. The basic
syntax of formula is

V1 + V2 + v3~V4 + V5

Where the left-hand side denotes the variables that are used to identify the rows, and the right-side denotes
the variables whose values are desired. When more than one value is cast onto a single cell, a aggregate
function, fun.aggregate will need to be defined as an optional argument to obtain a single value from the
various values. Note that dcast is faster for data.table than for data.frame.
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system.time(datdt<-dcast(datdt,year+period+fips~measure))

## user system elapsed
## 1.64 0.08 1.71

system.time(datdf <- dcast(datdf, year+period+fips~measure))

## user system elapsed
## 4.60 0.46 5.08

colnames(datdt)[4:7]<-c("rate","unemployment","employment","total")
colnames(datdf)[4:7]<-c("rate","unemployment","employment","total")
#measure codes are "03" - "06" - changing them to more meaningful names
str(datdt)

## Classes 'data.table' and 'data.frame': 1116421 obs. of 7 variables:
## $ year : Factor w/ 27 levels "1990","1991",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ period : Factor w/ 13 levels "M01","M02","M03",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ fips : Factor w/ 3222 levels "01001","01003",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ rate : num 6.4 6.2 7.1 12.4 5.2 11.4 13.6 6.5 4.8 8.1 ...
## $ unemployment: num 1050 2865 793 910 965 ...
## $ employment : num 15469 43013 10412 6457 17720 ...
## $ total : num 16519 45878 11205 7367 18685 ...
## - attr(*, ".internal.selfref")=<externalptr>
## - attr(*, "sorted")= chr "year" "period" "fips"

So now we have the data in the form that we need.

Replacing state codes with state abbreviations

Scraping a web table for state abbreviations: the rvest package

To reconstruct state rates from the county rates, we will need the state that each county belongs to. The
state codes are the first two numbers of the FIPS code, but for them to be more readable we will also need
the corresponding state abbreviations.

This is where we scrape an online table that contains the list of all abbreviations and the corresponding state
codes. The rvest package (Wickham 2016) comes in handy when scraping HTML tables:

library(rvest)

## Loading required package: xml2

theurl <- "https://www.mcc.co.mercer.pa.us/dps/state_fips_code_listing.htm"
file <- read_html(theurl) #reads the html page into R
tables <- html_nodes(file, "table") #looks for objects of type "table" in HTML
statecodes <- as.data.frame(html_table(tables[1], fill = TRUE), header = TRUE)
#extracts out the html table as a readable format in R
statecodes <- statecodes[-1, ] #deletes header
#The table is divided into two columns; we will need to combine them
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codetable <- data.frame(codes = c(statecodes$X2, statecodes$X5),
abbr = c(statecodes$X1, statecodes$X4),
names = c(statecodes$X3, statecodes$X6))

codetable <- codetable[-28,] #removes the blank line in the table

Matching indices: the match function

Now we have the table that we need. We can now extract the state codes from the FIPS code, and replace
them with the appropriate abbreviations. Essentially, since our state abbreviations are factor variables, we
will need to replace the levels of our state codes factor variable with the appropriate state abbreviations.

For this we will need the match function. The basic syntax is

match(x, y)

This function is a index retrieval function. For each element in x, this function returns the position of the
corresponding element in y. Since the way that the scraped data is ordered doesn’t necessarily match the
way the levels of the factor variable is ordered, this is useful:

datdt[, state := as.factor(substr(fips, start = 1, stop =2))]

## Warning in `[.data.table`(datdt, , `:=`(state, as.factor(substr(fips, start
## = 1, : Invalid .internal.selfref detected and fixed by taking a (shallow)
## copy of the data.table so that := can add this new column by reference.
## At an earlier point, this data.table has been copied by R (or been created
## manually using structure() or similar). Avoid key<-, names<- and attr<-
## which in R currently (and oddly) may copy the whole data.table. Use set*
## syntax instead to avoid copying: ?set, ?setnames and ?setattr. Also, in
## R<=v3.0.2, list(DT1,DT2) copied the entire DT1 and DT2 (R's list() used to
## copy named objects); please upgrade to R>v3.0.2 if that is biting. If this
## message doesn't help, please report to datatable-help so the root cause can
## be fixed.

datdf$state <- as.factor(substr(datdf$fips, start = 1, stop = 2))
#extracts state code from FIPS code

levels(datdt$state) <- codetable$abbr[match(levels(datdt$state), codetable$codes)]
levels(datdf$state) <- codetable$abbr[match(levels(datdf$state), codetable$codes)]
#matches each state code in the factor variable to its corresponding abbreviation

Reconstructing state rates from county rates

data.table syntax: dat[i, j, by]

Now we are ready to reconstruct state rates from the county rates. We will need to sum up the total
unemployment in each county by state, and data.table syntax makes it very easy to do this.

The data.table syntax dat[i, j, by] is very intuitive: i defines which rows are to be subsetted (can be
defined using rows numbers or logical conditions), j defines which values are to be used as columns, and by
defines which identifying variables are used to evaluate the expression in j.

For each part, we use .() to define a concatenation of variables, similar to how c() is used in base R.
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statedatdt<-datdt[,.(unemployment=sum(unemployment, na.rm=TRUE),
total=sum(total, na.rm=TRUE)),

by=.(state,year,period)]
#creates a new data.table - by summing unemployment and total labor force
#Use the combination of state, year and period as grouping variable for summing
statedatdt[, c("rate", "employment")

:= list(round(100*unemployment/total, 1), (total-unemployment))]
#reconstructs unemployment rate and employed people using available info
head3(statedatdt)

## state year period unemployment total rate employment
## 1: AL 1990 M01 130333 1879961 6.9 1749628
## 2: AK 1990 M01 21882 258638 8.5 236756
## 3: AZ 1990 M01 98394 1749597 5.6 1651203

data.frame syntax: melt and using the fun.aggregate argument in dcast

For data.frame, ideally we would want to do a similar “sum by” operation, but this is not available. Instead,
we use a not-so-efficient alternative afforded by the reshape2 package.
First we will use the opposite of dcast - the melt function to get the data back into long format. Then we
will use dcast again, but this time without fips as an identifying variable. This causes all measurements
with the same state to be grouped together in the same cell. Since a single cell only admits one measurement,
we use fun.aggregate = sum to obtain that single measurement.

statedatdf <- melt(datdf, id.vars = c("year", "period", "state", "fips"),
measure.vars = c("rate", "unemployment", "employment", "total"),
variable.name = "measure", value.name = "value")

str(statedatdf)#check the state of the data.frame after melting

## 'data.frame': 4465684 obs. of 6 variables:
## $ year : Factor w/ 27 levels "1990","1991",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ period : Factor w/ 13 levels "M01","M02","M03",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ state : Factor w/ 52 levels "AL","AK","AZ",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ fips : Factor w/ 3222 levels "01001","01003",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ measure: Factor w/ 4 levels "rate","unemployment",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ value : num 6.4 6.2 7.1 12.4 5.2 11.4 13.6 6.5 4.8 8.1 ...

statedatdf <- dcast(statedatdf, year+period+state~measure,
value.var="value", fun.aggregate = sum)

statedatdf$rate <- round(100*statedatdf$unemployment/statedatdf$total, 1)
str(statedatdf)#confirm this is in the format we need

## 'data.frame': 18044 obs. of 7 variables:
## $ year : Factor w/ 27 levels "1990","1991",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ period : Factor w/ 13 levels "M01","M02","M03",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ state : Factor w/ 52 levels "AL","AK","AZ",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ rate : num 6.9 8.5 5.6 7.5 5.7 6.2 5.3 4.6 5.5 5.9 ...
## $ unemployment: num 130333 21882 98394 83151 854161 ...
## $ employment : num 1749628 236756 1651203 1029087 14099741 ...
## $ total : num 1879961 258638 1749597 1112238 14953902 ...

As we saw, data.table syntax is easier to use.
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Constructing federal unemployment rates

Now we want a table that list federal unemployment rates, within years as rows and months as columns.
Using dcast this is fairly easy to do:

feddatdt<-datdt[,.(unemployment=sum(unemployment, na.rm=TRUE),
total=sum(total, na.rm=TRUE)),

by=.(year,period)]
#sums unemployment across each county
feddatdt[, rate := round(100*unemployment/total, 1)]
#calculates federal unemployment
head3(feddatdt)

## year period unemployment total rate
## 1: 1990 M01 7568905 125355936 6.0
## 2: 1990 M02 7432850 125516011 5.9
## 3: 1990 M03 7008944 125943166 5.6

fedymdt<-dcast(feddatdt,year~period,value.var="rate")
#gets years in rows and months in columns
head3(fedymdt)

## year M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13
## 1: 1990 6.0 5.9 5.6 5.4 5.3 5.5 5.6 5.6 5.6 5.6 5.9 6.1 5.7
## 2: 1991 7.1 7.4 7.2 6.6 6.8 7.1 6.9 6.7 6.6 6.6 6.8 7.0 6.9
## 3: 1992 8.2 8.3 7.9 7.3 7.4 8.0 7.8 7.5 7.4 7.0 7.2 7.1 7.6

#for data.frame we use same trick as earlier
feddatdf<-melt(datdf, id.vars = c("year", "period", "state", "fips"),

measure.vars = c("rate", "unemployment", "employment", "total"),
variable.name = "measure", value.name = "value")

feddatdf<-dcast(feddatdf,year+period~measure,value.var="value",fun.aggregate=sum)
feddatdf$rate <- round(100*feddatdf$unemployment/feddatdf$total, 1)
head3(feddatdf)

## year period rate unemployment employment total
## 1 1990 M01 6.0 7568905 117787031 125355936
## 2 1990 M02 5.9 7432850 118083161 125516011
## 3 1990 M03 5.6 7008944 118934222 125943166

fedymdf<-dcast(feddatdf,year~period,value.var="rate")
head3(fedymdf)

## year M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13
## 1 1990 6.0 5.9 5.6 5.4 5.3 5.5 5.6 5.6 5.6 5.6 5.9 6.1 5.7
## 2 1991 7.1 7.4 7.2 6.6 6.8 7.1 6.9 6.7 6.6 6.6 6.8 7.0 6.9
## 3 1992 8.2 8.3 7.9 7.3 7.4 8.0 7.8 7.5 7.4 7.0 7.2 7.1 7.6

Constructing wide format datasets

The last thing we want is a dataset with the year-month combinations as the rows, and each county
unemployment rate as the column. This is useful for those people who want to use the counties to estimate
some sort of sample correlation matrix:
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ymdatdt<-dcast(datdt,year+period~fips,value.var="rate")
ymdatdf <-dcast(datdf,year+period~fips,value.var="rate")
#gets counties on columns, and year+period as rows

Comparing total run time between data.table and data.frame

Finally, we will compare the total run time used to compare all of the operations done above. The code used
is

ptm <- proc.time()
#insert all code here
proc.time()-ptm

Running time for data.table:

##
Read 78.4% of 4465684 rows
Read 4465684 rows and 5 (of 5) columns from 0.270 GB file in 00:00:03

## Warning: NAs introduced by coercion

## Warning in `[.data.table`(datdt, , `:=`(state, as.factor(substr(fips, start
## = 1, : Invalid .internal.selfref detected and fixed by taking a (shallow)
## copy of the data.table so that := can add this new column by reference.
## At an earlier point, this data.table has been copied by R (or been created
## manually using structure() or similar). Avoid key<-, names<- and attr<-
## which in R currently (and oddly) may copy the whole data.table. Use set*
## syntax instead to avoid copying: ?set, ?setnames and ?setattr. Also, in
## R<=v3.0.2, list(DT1,DT2) copied the entire DT1 and DT2 (R's list() used to
## copy named objects); please upgrade to R>v3.0.2 if that is biting. If this
## message doesn't help, please report to datatable-help so the root cause can
## be fixed.

## user system elapsed
## 8.03 0.59 8.78

Running time for data.frame:

## user system elapsed
## 34.09 1.89 36.46

Mapping the data: the choroplethr package

One last useful thing to have is the ability to map out the values of each county on a heat map. This is where
the choroplethr package (Lamstein and Johnson 2016) is nifty:

factorasnumeric <- function(x){as.numeric(as.character(x))}
library(choroplethr)

## Loading required package: acs
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## Loading required package: stringr

## Loading required package: plyr

## Loading required package: XML

##
## Attaching package: 'XML'

## The following object is masked from 'package:rvest':
##
## xml

##
## Attaching package: 'acs'

## The following object is masked from 'package:base':
##
## apply

mapdat<-datdt[(year=="2016"&period=="M09"),.(factorasnumeric(fips), rate)]
colnames(mapdat) <- c("region", "value")
#county_choropleth needs the first column to be named "region", and the second "value"
mapdat$region[mapdat$region==2158]<-2270
mapdat$region[mapdat$region==46102]<-46113
mapdat <- rbind(mapdat, data.frame(region = 51515, value = mapdat$value[mapdat$region==51019]))
county_choropleth(mapdat)

## Warning in super$initialize(map.df, user.df): Your data.frame contains
## the following regions which are not mappable: 72001, 72003, 72005, 72007,
## 72009, 72011, 72013, 72015, 72017, 72019, 72021, 72023, 72025, 72027,
## 72029, 72031, 72033, 72035, 72037, 72039, 72041, 72043, 72045, 72047,
## 72049, 72051, 72053, 72054, 72055, 72057, 72059, 72061, 72063, 72065,
## 72067, 72069, 72071, 72073, 72075, 72077, 72079, 72081, 72083, 72085,
## 72087, 72089, 72091, 72093, 72095, 72097, 72099, 72101, 72103, 72105,
## 72107, 72109, 72111, 72113, 72115, 72117, 72119, 72121, 72123, 72125,
## 72127, 72129, 72131, 72133, 72135, 72137, 72139, 72141, 72143, 72145,
## 72147, 72149, 72151, 72153

## Warning in self$bind(): The following regions were missing and are being
## set to NA: 15005
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[1.7 to 3.3) 

[3.3 to 4.0) 

[4.0 to 4.6) 

[4.6 to 5.1) 

[5.1 to 5.8) 

[5.8 to 6.8) 

[6.8 to 22.7]

12



References

Dowle, Matt, and Arun Srinivasan. 2016. Data.table: Extension of ‘data.frame‘. https://CRAN.R-project.
org/package=data.table.

Lamstein, Ari, and Brian P Johnson. 2016. Choroplethr: Simplify the Creation of Choropleth Maps in R.
https://CRAN.R-project.org/package=choroplethr.

Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12):
1–20. http://www.jstatsoft.org/v21/i12/.

———. 2016. Rvest: Easily Harvest (Scrape) Web Pages. https://CRAN.R-project.org/package=rvest.

13

https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=choroplethr
http://www.jstatsoft.org/v21/i12/
https://CRAN.R-project.org/package=rvest

	Introduction
	Reading in the data
	Getting a unique identifier: FIPS codes and the {substr} function
	Consolidating data: reshape2 and the dcast function
	Replacing state codes with state abbreviations
	Reconstructing state rates from county rates
	Constructing federal unemployment rates
	Constructing wide format datasets
	Comparing total run time between data.table and data.frame
	Mapping the data: the choroplethr package
	References

